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INCOMPLETE CONTRACTS AND COMPLEXITY COSTS

ABSTRACT. This paper investigates, in a simple risk-sharing framework, the ex-
tent to which the incompleteness of contracts could be attributed to thecomplexity
costsassociated with the writing and the implementation of contracts. We show
that, given any measure of complexity in a very general class, it is possible to
find simple contracting problems such that, when complexity costs are explicitly
taken into account, the contracting parties optimally choose anincompletecon-
tract which coincides with the ‘default’ division of surplus. Optimal contracts with
complexity costs are constrained efficient in our model. We therefore interpret our
results as saying that, in the absence of astrategicrole for complexity costs, their
effect is entirely determined by their size relative to the size of payoffs.
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1. INTRODUCTION

1.1. Overview

The contracts which economic agents write to regulate their trans-
actions are oftenincompletein the sense that they take ‘less in-
formation’ into account than would be optimal for the agents to
include. One often cited reason for the incompleteness of contracts
is the presence ofcomplexity costsassociated with writing and
implementing them Grossman and Hart (1986), Hart and Moore
(1988).

This paper investigates the role of complexity costs in a simple
risk-sharing model. We show that complexity costs may lead to con-
tract incompleteness. However, in our model, complexity costs do
not play a genuinely strategic role. This leads to a choice of contract,
after complexity costs are taken into account, which isconstrained
efficient. We interpret this as saying that, in the absence of a strategic
role, the effect of complexity costs is entirely determined by their
size, relative to the share of the surplus which the contract allocates
to each party. In Anderlini and Felli (1997), we investigate a model
in which ex-antecontractual costs play a strategic role akin to that

Theory and Decision46: 23–50, 1999.
© 1999Kluwer Academic Publishers. Printed in the Netherlands.



24 LUCA ANDERLINI AND LEONARDO FELLI

of ‘relationship-specific investments’ in a ‘hold-up’ problem (Hart
and Moore 1988).

We restrict ourselves to contracting problems involving two
agents only. The two parties today face an environment in which un-
certainty is embodied in the resolution of a state of nature tomorrow.
They may decide today to specify a ‘sharing rule’ which prescribes
a pair of ‘outcomes’ – one for each agent – as a function of the
particular state which will be realized tomorrow. We do not consider
the possibility of contracting over actions and/or any informational
asymmetries, although we believe that our approach to the problem
naturally extends to cover some of these cases.

We restrict ourselves to contracts which can be viewed as a well
specified ‘procedure’ consisting of a finite set of ‘clauses’ which
embody the agents’ chosen sharing rule in the sense that, once the
state of nature is realized, it can be used as an ‘input’ of what is spec-
ified in the contract which yields the prescribed pair of outcomes in
a finite number of ‘steps’. In Anderlini and Felli (1994), we argued
at length that this restriction captures the nature of what agents can
and cannot do when they are restricted to choosingwrittencontracts.
We do not repeat the arguments here; the same interpretation applies
unchanged to the analysis we carry out in this paper.

Once a contract is viewed as a procedure as we have just de-
scribed, it is immediately clear that we can distinguish between two
types of complexity costs associated with it, which for the time
being we simply call ‘ex-ante’ and ‘ex-post’.1 Ex-ante complexity
costs are those associated with defining the procedure. For written
contracts these are the costs of writing out in full the text of the
contract itself. Ex-post complexity costs are those associated with
‘working out’ the outcomes which the procedure prescribes once the
state of nature is realized. They can be viewed as embodying both
the pure ‘computational’ costs associated with a particular contract-
state pair and the costs of actually implementing the outcomes
which the contract prescribes in each particular state.

Viewing a contract as a procedure in this way, of course, does not
pin down the form of the complexity cost functions in any particular
way. Indeed, we take the view that the exact form of the com-
plexity costs associated with writing and implementing a contract
depends on an extremely large (and complex) set of circumstances
which define the contract problem at hand. Several elements which
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may affect what is difficult and what is easy to do with a contract
immediately come to mind.

Some of the factors affecting the complexity costs associated
with a contract could be termed ‘environmental’. These are the char-
acteristics of the larger system in which a contractual arrangement
is embedded. The language in which a contract is drafted may make
a difference. For instance, a contract concerning computer software
is probably ‘easier’ to write in English than in Classical Arabic. On
the other hand, a contract which concerns the observance of certain
Islamic religious rules is very probably more easily written in Arabic
than in English.

Any contract is ‘embedded’ in a larger legal system, which pre-
scribes a variety of formalities, such as those needed for the contract
to be valid and enforceable by a court. Some legal systems may
easily allow certain transactions, while others may even explicitly
forbid them. An example are lawyers’ contingency fees, which are
the norm in the Unites States, but (up to 1994) were forbidden in the
United Kingdom. A further example is the procedure for changing
a person’s name. In the United Kingdom this is extremely simple
(deed poll), while in some Roman-Napoleonic legal systems it is
an extremely complex matter. In Italy, for instance, it requires a
judgement by the Court of Appeal.

A second variety of factors affecting the complexity costs asso-
ciated with a contract are specific to the particular situation at hand.
Consider, for instance, a co-insurance problem in which the parties’
property rightsover the state-contingent surplus are defined in a
particular way. Clearly, a contract which prescribes that each party
keeps the portion of surplus over which they have property rights
is simpler to write and implement (in this extreme case it is likely
that writing no contract at all will suffice) than a contract which
prescribes some state-contingent transfers between the agents. In-
deed, it is an explicit feature of the model we set out below, the fact
that a contracting problem is usually associated with some ‘default’
sharing rule which requires minimal complexity costs to write and
implement.

To take into account the fact that a variety of complexity costs
are possible, we consider a wide class of possible complexity cost
functions in our analysis below. Another possible way of proceeding
(as in Dye 1985) is, of course, to try to specify fully a particular



26 LUCA ANDERLINI AND LEONARDO FELLI

complexity measure which ‘fits well’ the contractual problem at
hand. The advantage of this way to go is that a fuller characteri-
zation of the equilibrium contracts is possible. The disadvantages,
in our view, are two fold. First of all, as we argued above, it may be
very difficult to specify a particular complexity measure which will
accurately reflect all the factors which determine what is complex
and what is not in a given contractual problem: some element of
arbitrariness will always be present. Secondly, as we argue below
(Subsection 1.2), the results obtained in this way will not be robust
to a change in either the contracting problem, or in the factors which
determine which one is the ‘correct’ complexity measure to use.

Since we are not willing to specify a precise form of the complex-
ity cost function, our results are necessarily of the type ‘given any
complexity cost function in a particular class, the chosen contract
has characteristicx or y...’, and the feature of the contract we choose
to concentrate on isincompleteness.

To keep the analysis as simple as possible, we focus on an ex-
treme form of incompleteness. We call incomplete a contract that
does not modify the default allocation of surplus (provided that
the default allocation is not thefirst best). Clearly our definition
of incompleteness is then ‘too narrow’. It suffices for our analysis
below, however. Moreover, it is compatible with every definition of
incompleteness found in the existing literature (a.o., Grossman and
Hart 1986; Hart and Moore 1988; Anderlini and Felli 1994; Tirole
1994).

The main result of our analysis is that, given any complexity cost
function in a very general class, one can find a contracting problem
such that, when complexity costs are taken into account, the parties
will choose anincompletecontract. Indeed for any given complexity
cost function it is always possible to find a co-insurance problem
that is ‘complex’ enough that it is not worthwhile for the parties to
write any contract. We then proceed to show that, as the relative size
of the complexity costs, shrinks to zero, the limit optimal contract
given complexity costs, coincides with the first best allocation of
surplus.

The plan of the paper is as follows. The class of contracting
problems which we consider is introduced in Section 2. Section
3 presents the notion of an algorithmic or computable contract.
We then proceed to describe the class of complexity cost func-
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tions which we associate to computable contracts (Section 4) and
the parties’ decision problem when complexity costs are taken ex-
plicitly into account (Section 5). The main results of the paper
are contained in Section 6 in which we partly characterize optimal
computable contracts with complexity costs. Section 7 concludes
the paper. Before proceeding any further, we briefly discuss some
related literature.

1.2. Related literature

Starting with Grossman and Hart (1986) a number of papers have
discussed incomplete contracts. Most of these papers, however, as-
sume that contracts are incomplete and concentrate on the role
of available mechanisms, and in particular institutions, in mitigat-
ing the inefficiencies generated by contract incompleteness. Some
of the mechanisms considered are: vertical and lateral integration
(Grossman and Hart 1986), the optimal allocation of ownership
rights on physical capital (Hart and Moore 1990), and the delega-
tion of authority within organizations (Aghion and Tirole 1994).
We differ from these papers since we do not assume contractual in-
completeness but rather derive itendogenouslyfrom the complexity
costs associated with the writing and implementing of a contract.

A number of recent papers have asked the question of why
contracts are incomplete. Hart and Moore (1988) and a number
of subsequent papers (Chung 1991; Aghion, Dewatripont and Rey
1994; Noldeke and Schmidt 1995) have explored whether one of the
causes of contractual incompleteness is the fact that the outcome that
the parties wish to implement through a contract may be, at least in
part, unobservable by the enforcing agency (the court). They con-
clude that there exist circumstances in which the parties will write
a contract which is silent on certain (or all) states. Such contract
will leave out some details that the court cannot observe. However,
in a recent paper Maskin and Tirole (1996) show that in such an
environment it is possible to devise a mechanism that implements
the same outcome that a complete contract would implement. This is
achieved by asking the contracting parties—once the relevant state
of nature is realized—to report such a state or, equivalently, to report
the utility levels accruing to each party in such a state and inducing
through incentives truthful revelation. By contrast, we assume that
the court can observe the realized state of nature but there exist
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costs associated with describing and implementing the mechanism
the parties would like the court to implement.

The papers most closely related to the present one are Dye (1985)
and Anderlini and Felli (1994). Dye (1985), in a contractual set-
up which is different from the one we analyse below, postulates
a complexity cost function which is increasing in the ‘number of
contingencies’ which a contract takes into account (the number of
‘cells’ into which the state space is partitioned by the contract). He
then proceeds to derive a parametric class of equilibrium contracts
which are incomplete. However, the specific complexity measure
which he postulates leads to some unappealing results. For instance,
Hart and Holmström (1987) argue that if the optimal contract is, say,
linear in the random size of the surplus, then it will have an infinite
complexity cost and therefore will never be chosen. However, if the
same contract is written as shares of the surplus accruing to the
parties as a function of the state of nature, then its complexity cost
will be zero. This type of criticism does not apply to our analysis
below since we obtain results which are valid for any complexity
measure in a very general class.

In Anderlini and Felli (1994) we use the same model of a con-
tract as an algorithmic procedure (a Turing Machine) used in this
paper to explore whether this restriction may explain, by itself, con-
tractual incompleteness. We conclude that restricting the parties to
choose algorithmic contracts has a negligible impact on the parties’
expected utilities unless the restriction is paired with an equivalent
restriction on the parties’ decision process. Hence, in the absence
of explicit bounds on the parties’ ability to select or write and
enforce algorithmic contracts, every feasible contract may be ‘ap-
proximated’ by an algorithmic one. In this paper we go one step
further. We impose explicit complexity bounds on the parties’ ability
to write and enforce computable contracts and inquire whether the
resulting outcome may be meaningfully defined to be an incomplete
contract.

In a recent paper, Segal (1995) focuses on a contracting problem
in which the relevant state of nature is not observable to the en-
forcing agency (the court). In such an environment he analyzes the
parties’ welfare gains from using message contingent mechanisms
as in (for instance) Maskin and Tirole (1996). He shows that such
gains become negligible as the number of relevant states of nature
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increases without bound. The implication is then that message con-
tingent mechanisms will not be used if they entail a complexity cost.
As well as in the formulation of the contracting problem, we differ
from Segal (1995) in that we explicitly introduce complexity costs.

Finally, starting from Rubinstein (1986) a literature has de-
veloped that explores the impact of complexity considerations in
repeated strategic interaction (Abreu and Rubinstein 1988; Piccione
1992; Rubinstein and Piccione 1993). We differ from this literature
in the complexity measure we choose as well as in the nature of the
model. Indeed, this literature focuses on the complexity measure
associated with the computing device strategically chosen by the
players. We associate complexity with the computations performed
by a computing device (a contract), rather than with the computing
device itself. In our framework, a ‘complex’ computing device could
be used to perform a ‘simple’ computation, or vice versa. It is the
complexity of the actual computation and not of the device which
matters in our model.

2. THE CONTRACTING PROBLEM

We consider a general characterization of a simple co-insurance
problem. Two risk averse parties agreeex-anteon a contract which
allows them to share the risk associated to the common random
environment in which they operate.

Let S = {1, . . . , s, . . . , N} be a finite set of mutually exclusive
possible states of nature, andP = {p1, . . . , pN } a probability distri-
bution overS. We takeπs to denote the size of the ‘surplus’ jointly
available to the two contracting agents as a function of the realized
state of nature. We assume that, in the absence of any contractual
prescription, theproperty rightsof the two parties over the surplus
are well defined. This will identify the default outcome which we
mentioned in the Introduction. Letdis (with dis > 0) be the share of
the surplus owned by agenti = 1, 2 when the state of nature iss.
We also setd1

s + d2
s = πs, for anys ∈ S, and denote byds the pair

(d1
s , d

2
s ) and bydi the vector(di1, . . . , d

i
N).

A contract can now be viewed, without loss of generality, as an
object which, as a function of the state, indicates how much of the
surplus should go to each agent. The ‘outcome’ of a contract in
states is the pairrs = (r1

s , r
2
s ) specifying the pair of shares accru-
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ing to each party in states. The entire contract is denoted byr =
(r1, . . . , rN). We restrict contracts to satisfyris > 0 for i = 1, 2 and
for all s ∈ S. We are therefore assuming that some form of limited
liability constrains the contracts which the parties can choose. Fi-
nally, it is natural to assume thatr1

s+r2
s 6 d1

s+d2
s = πs for all s ∈ S.

Given a sharing ruler let agenti’s preferences in states be repre-
sented by the following state contingent utility function denoted by
Ui(r

i
s , s). For eachs ∈ S we assumeUi(·, ·) to be strictly increasing,

continuous and concave in its first argument. To avoid corner solu-
tions we also assume limx→0 ∂Ui(x, s)/∂x = +∞ for all s ∈ S.

Similarly to Anderlini and Felli (1994), we consider a general
formulation of the bargaining procedure which yields the optimal
contract between the two agents. We take the ‘reduced form’ of the
bargaining procedure to be a functionG : R2→ R which maps the
two parties’ expected utility levels into the reals. We takeG to be
continuous and increasing in both arguments. Let

G[r] ≡ G
{

N∑
s=0

U1(r
1
s , s)ps,

N∑
s=0

U2(r
2
s , s)ps

}
(1)

The default sharing rule we have defined above clearly yields a
lower bound on the expected utility which the agents can achieve by
‘walking out’ of the contractual bargaining. We therefore set agent
i’s reservation expected utility level to be

∑N
s=1Ui(d

2
s , s)ps .

We have now all the elements to define the set offirst bestsharing
rules as the setR∗ of all r∗ which solve the following problem:

max
r
G[r]

s.t. r ∈ F (2)

whereF denotes the set of sharing rules satisfying:

N∑
s=1

U1(r
1
s , s)ps >

N∑
s=1

U1(d
1
s , s)ps

N∑
s=1

U2(r
2
s , s)ps >

N∑
s=1

U2(d
2
s , s)ps

ris > 0 ∀ i = 1, 2 ∀ s ∈ S
r1
s + r2

s 6 d1
s + d2

s ∀ s ∈ S.

(3)
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3. COMPUTABLE CONTRACTS

The contract the parties choose to share the risk is effective only in
the event that it can be enforced. We focus on situations in which
this is possible only if the contract is a written agreement between
the parties. In many economic situations legal restrictions, com-
mon practice or simply the contracting parties’ will, impose such
restriction on enforceable contracts, here we take it simply as given.

The required written form of contracts has consequences in terms
of the nature of the mechanism by which the contract is to be en-
forced. Indeed, we shall assume that the written contract contains
all the enforcement prescriptions which the court must apply. In
other words, the written contract is a procedure that embodies both
the prescription associated with every realized state of nature and
how these prescriptions must be enforced. In this sense the court
that implements a given contract is just apassivesubject: it simply
ensures that the prescriptions of the contract are complied with by
the contracting parties.

We view a written contract as a finite set of clauses which, given
a state of nature, yields a value of the sharing rule in a finite number
of ‘steps’. In our context, a finite number of steps may be interpreted
as the fact that, examining the contract for a given realized state of
nature it is possible to identify the associated sharing rule in finite
time. As in Anderlini and Felli (1994), we model the finite set of
clauses that associates a value of the sharing rule to a realized state
of nature in finite time as analgorithmic function. We adopt what
is widely agreed to be the widest possible notion of algorithmic
function – a function is algorithmic if and only if it is computable
by a Turing machine (or by an abstract computing device in an
equivalent class). Throughout the rest of the paper we use the terms
algorithmic, Turing-computable, or simply computable in an equiv-
alent way. In essence, we identify a written contract with a Turing
machine which computes the values of the sharing rule as a function
of the state of nature and of the value of the default in the given state.

A Turing machine is an abstract computing device which per-
forms computations according to a givenprogram. We do not give
a formal definition here, but refer instead to standard texts such as
Rogers (1967), Cutland (1980), or for a brief exposition Anderlini
(1989). Here we only recall that using a standard technique, known
asGödel numbering, it is possible to put Turing machines, in a one-
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to-one (computable) correspondence with the natural numbers. In
other words, it is possible to code every computable contract by
means of a natural number. Further, the same procedure allows us
to code with natural numbers the inputs and outputs of Turing ma-
chines. We denote by{x}(e) the result of the computation of Turing
machinex ∈ N on inpute ∈ N. The symbols{x}(e) ↑ and{x}(e) ↓
will denote a computation which halts and does not halt respec-
tively; while the symbol{x}(e1, . . . , em) denotes a Turing machine
x applied to them inputse1, . . . , em. A total computable function
is a computable function which is defined for all possible inputs.

Throughout the paper, the symbol〈x1, . . . , xn〉 denotes the code
in N of then-tuple of natural numbers(x1, . . . , xn). If z ∈ N is the
code of ann-tuple of natural numbers, the notation〉z〈 stands for
the actual set of numbers coded byz. Notice that our notation, for
instance, implies that given anyn-tuple(x1, . . . , xn) ∈ Nn we have
that〉〈x1, . . . , xn〉〈 = (x1, . . . , xn).

Using the same symbol as for the contract array of Section 2, a
typical computable contract will be a Turing machiner ∈ N, which
takes as inputs the states ∈ S, and the default allocation in states,
ds . Therefore in states the value of the sharing rule computed byr is
given by{r}(s, ds). It should be noted that we take the values of the
default allocation for any given state of nature to be a pair of rational
numbers,(d1

s , d
2
s ) ∈ Q2 so that they can be appropriately coded as

an input to the Turing machiner.2 Indeed, we use the same symbol
ds to denote the codeds = 〈d1

s , d
2
s 〉 and the actual pair(d1

s , d
2
s ),

so as to minimize notation. We also take the shares specified by a
computable contract to be rational numbers. In other words, we take
the output of{r}(s, ds) to be a pair of rational numbers,{r}(s, ds) =
(r1
s , r

2
s ) ∈ Q2.

We conclude this section with an observation which clarifies the
role of the assumption of computability of contracts in our analysis.
It can be shown that in the present context, before complexity costs
are taken into account, the assumption that a contract be computable
imposes ‘negligible’ constraints on the agents in their choice of
sharing rules. In Anderlini and Felli (1994) we show formally that,
provided certaincontinuityconditions are satisfied, then the level
of expected utility which the parties can achieve in the first best
can always beapproximatedusing a computable contract.3 In this
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sense, computability of the sharing rule alone imposes negligible
constraints on the agents’ choices.

In essence the assumption of computable contracts in our analysis
below is a device which enables us to define the complexity costs
associated with a contract in each state of nature. If we want to
identify the source of these costs with the complexity of the opera-
tions which the contract prescribes in a given state, we are implicitly
assuming that a contract can be identified with a well defined (finite)
set of operations in each given state. In other words we are implic-
itly assuming that the contract is computable in the sense specified
above.

4. COMPLEXITY

In the Introduction we argued at length that it is not possible to spec-
ify a complexity cost function without reference to a whole host of
factors which vary widely from one contract problem to another. We
therefore work with an extremely wide class of possible complexity
cost functions.

We model complexity costs as being a function of the contract-
state-default value triple. This formulation is sufficiently general so
that the same function can contain both writing (ex-ante) and imple-
mentation (ex-post) costs. The ex-ante costs can be included simply
as a term which behaves like a standard fixed cost. The part of the
complexity cost function which ‘varies’ with the state represents
implementation costs.

Although the class we consider is large enough to contain func-
tions which are widely different from each other, we think it is useful
to introduce the type of complexity functions we have in mind by
means of an analogy. Imagine first of all, that the writing and im-
plementation of the contract in question is carried out by a single
unit, which we will call a ‘law firm’. This is purely for expositional
purposes as it is clearly the case that writing a contract is a lawyer’s
job, while enforcement often requires the intervention of a third
party, frequently a court.

Everyone in the law firm dealing with the contract charges for
their time. They do so by filling in ‘time sheets’ every time they do
anything that concerns the contract. The total complexity cost asso-
ciated with a particular contract-state-default triple is then computed
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adding up the costs of the various time sheets accumulated in the law
firm during the entire process of writing and implementation. (Dif-
ferent types of work can of course be charged at different rates.) This
way of computing complexity costs gives us almost automatically
four properties of the complexity cost function.

The first is trivial, and it is simply that if the prescription of
the contract for a given state-default pair is undefined because the
contract requires the performance, say, of an infinite number of op-
erations, then the complexity costs are themselves undefined. This
could be the case, for instance, with a contract in which clauseα

calls on clauseβ to be checked and clauseβ calls back on clauseα
in a ‘loop.’

The second property is that it is always possible in principle,
given a contract and a state-default pair, to work out whether the
complexity costs will exceed a particular, arbitrarily given, value.
All one has to do is let the law firm start work on the contract-
state-default triple, and then monitor the cumulative value of the
time sheets through time. If the threshold value is reached before
the work is finished, then the complexity costs exceed the given
value. If the work ends before the threshold value is reached, then
we will know that the complexity costs are below it. Notice that this
property holds also for contracts and state-default pairs for which
the prescription of the contract is not defined.

The third property is that, given an arbitrary cumulative value for
the time sheets again, it is possible to ask and answer the question:
what stage of the process does the law firm get to if we stop its opera-
tions precisely when the complexity costs reach the given threshold
value? (If the value is never reached we take the answer to be the
outcome of the contract.) This can clearly be done in much the same
way as for the previous property. We let the firm start the work on
the contract-state-default triple. When the threshold value is reached
we can imagine stopping all work and collecting the ‘interim results’
that were reached up to that point. They may constitute a ‘coherent’
outcome or not, but they can certainly be put together to form a
description of the stage that was reached in the work of the law firm.

The fourth property is apparent once we think of the law firm
as an organization which has to proceed by ‘finite increments’ in
its work. Suppose that we stopped the operations of the law firm
at a particular cumulative value of the time sheets as above. Let
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this cumulative value ben. Let alsoθn represent the state of the
work carried out by the law firm up to then. Suppose that we are
also given the specification of the contract-state-default triple. Then,
given these four elements, there is only afinite setof values which
θn+1 can take. In other words, between ‘stages’n andn + 1 only a
finite set of operations can be carried out by the law firm.

Notice that the latter property is a statement concerning the set of
possible operations that can be performed in a unit of time (between
two consecutive stages) within the procedure that implements the
computable contract in question. Once the computable contract is
chosen by the contracting parties the set of operations necessary to
implement that contract is necessarily finite. This is due to the com-
putability restriction which requires the procedure embodied in the
contract to deliver a value of the share accruing to each party in finite
time. Hence, this property should not be interpreted as a restriction
on the set of feasible operations among which the contracting parties
may choose when identifying the optimal computable contract. Such
a set may indeed be infinite and the property in question still hold.

Once we introduce complexity costs the question arises as to how
such costs will be shared by the parties. In general, this sharing will
be specified by the contract and it may itself be complex. Hence,
a general complexity measure has to include this extra source of
complexity. In other words, the complexity measure will depend on
how the parties share the complexity costs. In terms of the activity
of the law firm described above the cumulated time sheets at every
instant of time have to include also the time required by the law firm
to handle the part of the contract that stipulates how the contracting
parties will share the payment of the complexity costs. Through-
out the rest of the paper, we shall denote withkis the share of the
complexity costs that accrues to partyi in state of natures and take
k1
s + k2

s = 1 for every states ∈ S. Further, for sake of simplicity,
we take the shares to be rational numberskis ∈ Q and denote byks
the pair(k1

s , k
2
s ), and byk = 〈k1, . . . , kN〉 the code of both parties’

shares in every state of natures.
The class of complexity cost functions which we consider below

is the class of all complexity cost functions which satisfy the formal
counterparts of the four properties we have just described. Formally,
a complexity cost functionc ∈ N is a computable mapc : N4→ N
which satisfies the following assumptions.4
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ASSUMPTION 1. Given any pair(ds, s), the complexity costs
associated with the pair(r, k) are defined if and only if the com-
putation{r}(ds, s) is defined. Formally, we assume that ifc ∈ N is a
Turing machine computing a complexity cost function then

{c}(r, k, ds, s) ↓ if and only if {r}(ds, s) ↓ (4)

The second property of a complexity cost function is that it is always
possible to check in a computable way whether the complexity costs
associated with a given(r, k, ds, s) exceed a given value or not.
Formally we state

ASSUMPTION 2. Let c be a Turing machine which computes a
complexity cost function. Then there exists a Turing machinemc
(which depends onc) such that, for all(r, k, ds, s, y) ∈ N5 we have

{mc}(r, k, ds, s, y) =
{

0 if {c}(r, k, ds, s) 6 y
1 otherwise

(5)

The next property of complexity cost functions says that given
any arbitrary valuey for the complexity cost it is possible to work
out the ‘stage of the computation’ reached at complexity costy. If
the total complexity cost is belowy, then the stage of the computa-
tion reached byy is simply the result of the computation itself. In
the formal assumption which follows,θ(·) should be thought of as
the state of the ‘interim result’ at stagey, while iy should be thought
of as the ‘state of the program’ at stagey. We state the following
as an assumption, although it can be demonstrated to be a feature
of all standard computational models which give rise to the class of
general recursive functions.

ASSUMPTION 3. If c is a Turing machine computing a complexity
cost function, then there exist two total computable functions,θ :
N5 → N andf : N3 → N such thatθ(r, k, ds, s, 0) = 〈ds, s〉 for
all (r, k, ds, s) ∈ N4, and (seti0 = 0 by convention)

f (r, iy, θ(r, k, ds, s, y)) = 〈θ(r, k, ds, s, y + 1), iy+1〉 (6)

and

{c}(r, k, ds, s) 6 y ⇒ θ(r, k, ds, s, y) = {r}(ds, s) (7)
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We also definefθ to be the function which computes the first el-
ement of the coded pair which is computed byf itself. In other
words,fθ (r, iy, θ(r, k, ds, s, y)) = θ(r, k, ds, s, y + 1).

The last assumption on complexity cost functions simply says
that between stagesy andy+ 1 of the computation, only a finite set
of alterations to the interim resultθ(·) are possible.

ASSUMPTION 4. If c is a Turing machine computing a complexity
cost function, then for some pair of functionsθ(·) and f (·) as in
Assumption 3 there exists a total computable functionz such that

fθ (r, iy, θ) ∈〉z(θ)〈 (8)

From now on we will refer to a complexity cost function which sat-
isfies Assumptions 1, 2, 3 and 4 simply as anadmissiblecomplexity
cost function.

5. THE CONTRACTING PROBLEM WITH COMPLEXITY COSTS

We are now ready to introduce complexity costs in the contracting
problem we have described in Section 2 and analyze their impact on
the solution to the problem itself.

We start by modifying the definition of a computable contract
that we introduced in Section 3 above. Indeed, when complexity
costs are explicitly taken into account the contracting parties have to
agree on both the net share of the surplus each party will receive –
the computable sharing ruler – andon how to share the complexity
costs associated with the contract in question – the vector coded by
k. Therefore, we take a computable contract to be the pair of natural
numbers(r, k) ∈ N2.

We then proceed to modify the general contracting problem (2) in
order to incorporate complexity costs. Imagine that the complexity
costs can be measured in some resource which trades at a given
relative price with the resource which is the object of risk-sharing
for the two parties concerned. Call this relative priceq > 0. Then we
modify the general contracting problem by requiring the contracting
parties to cover with the surplus available in every given state of
nature to cover the complexity costs imputed in the resource the
parties are sharing. In other words, we require the parties to subtract



38 LUCA ANDERLINI AND LEONARDO FELLI

the costs, times the relative priceq, from the total available surplus
for any given state of nature.5 This clearly implies a restriction on
the set of feasible contracts since it introduces a state-by-state upper
bound on the cumulative complexity costs that can be associated
with each feasible contract.6

Intuitively, this way to introduce complexity costs in the parties’
risk-sharing problem corresponds to an interpretation of these costs
as legal costs. Complexity is not necessarily associated with devis-
ing the contract but rather with the writing and enforcement of such
a contract. Alternatively, one could interpret the complexity costs as
the price, in terms of the resource allocated, of hiring an outsider
to devise the contract for the contracting parties. In other words we
assume the existence of a market in which such a service is available
and may be priced.

The above restriction requires us to modify the feasibility con-
straint in Problem (2). This constraint needs to be replaced by a
constraint that takes into account the complexity costs. Given a Tur-
ing machinec computing an admissible complexity cost function
and a default allocation of surplusd, a computable contract(r, k) is
feasible if and only if

r1
s + r2

s + q {c}(r, k, s, ds) 6 d1
s + d2

s . (9)

Then the analogue of Problem (2) can be stated as

max
(r,k)∈N2

G[{r}]
s.t. {r}(·) ∈ T (10)

whereT is the set of pairs(r, k) ∈ N2 satisfying:

N∑
s=1

U1(r
1
s , s)ps >

N∑
s=1

U1(d
1
s , s)ps

N∑
s=1

U2(r
2
s , s)ps >

N∑
s=1

U2(d
2
s , s)ps

ris > 0 ∀ i = 1, 2 ∀ s ∈ S
r1
s + r2

s + q {c}(r, k, s, ds) 6 d1
s + d2

s ∀ s ∈ S.

(11)

We will refer to a Turing machine which solves Problem (10) as an
optimal computable contract with complexity costsc.
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6. OPTIMAL CONTRACTS WITH COMPLEXITY COSTS

In this section we present the main results of our analysis. We start
by showing that the parties’ choice problem in the presence of com-
plexity costs (Problem (10)) has indeed a solution. We then proceed
to give a partial characterization of such an optimal computable
contract. We first show that in the class of risk-sharing problems it is
possible to find contracting problems such that when complexity is
explicitly accounted for, the parties’ expected utility corresponding
to the optimal computable contract is bounded away from their ex-
pected utility corresponding to the first best contract. In other words,
the complexity costs have a non-negligible impact on the parties’
welfare. We can state this result in these terms since we are able to
show that such a result holds even in a class of risk-sharing problems
yielding a computable first-best contract. Hence, we can be sure that
the loss in welfare is not due to the algorithmic restriction imposed
on feasible contracts but rather to the complexity costs.

Having proved that the parties’ expected utility corresponding
to the optimal computable contract is bounded away from the first
best, still does not demonstrate that the optimal computable contract
is incomplete. To proceed further in this direction, we add two more
restrictions to the class of complexity measures which we termed
admissible. We are then able to show that, for any given complexity
measure in this marginally more restrictive class it is possible to find
a contracting problem such that the optimal choice for the contract-
ing parties, when they take complexity costs into account, is to write
no contract and rely on the default allocation of surplus.

We then conclude the analysis by asking whether the optimal
contract with complexity costs is constrained efficient even as com-
plexity costs shrink to zero. We show that indeed this is the case:
when complexity costs tend to zero the limit optimal contract
coincides with the first best allocation of surplus.

Before proceeding any further we prove a preliminary result. Let
c be a given admissible complexity cost function. Then, for any
state there exists a finite set within which the output of any feasible
contract must lie. This finite set can be effectively computed from
the states.

Formally, this preliminary result can be stated as the following
lemma.
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LEMMA 1. Let c andd be given. Then there exists a computable
functionh such that for any feasible contract(r, k) ∈ T , as defined
in (11), we have

{r}(s, ds) ∈〉h(s)〈 (12)

Proof.Notice that, by (9),{c}(r, k, s, ds) 6 (d1
s +d2

s )/q for every
s ∈ S. We display an informal algorithm for computing the elements
of the set〉h(s)〈 in (12). Let20 = 〈ds〉, and define21 = z(20)

wherez is the computable function of Assumption 4. Denote byθe1
the elements of21. In other words let〉21〈 = {θ1

1, · · · , θe1, · · · θE1
1 }.

Use nowz recursively to define

2n =
〈En−1⋃

e=1

〉z(θen−1)〈
〉 (13)

Notice now that by (7) of Assumption 3 and (8) of Assumption 4,
we must have

{r}(s, ds) ∈〉2y〈 (14)

whenevery > {c}(r, k, s, ds). By feasibility of(r, k), condition (9),
the latter inequality, must clearly hold if we sety > (d1

s + d2
s )/q.

Sincez is computable by Assumption 4, and the values of2n are
obtained by finite recursion starting from the values ofs and ds,
clearly there exists a computable functionh such thath(s) = 2y
for everys ∈ S, with y > maxs∈S(d1

s + d2
s )/q. 2

We now restrict the class of complexity measures we consider so
as to require that the default allocation of surplus is the least cost
allocation a contract can implement. Indeed, one way to implement
such an allocation is to write no contract at all.

ASSUMPTION 5. The complexity cost functionc is such that there
always exists a contract(r, k) which computes the default sharing
rule and has zero complexity costs for alls in S. In other wordsc is
such that there exists(r, k) such that

{r}(s, ds) = ds and {c}(r, k, s, ds) = 0 ∀ s ∈ S (15)
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Notice that Assumption 5 guarantees that the feasible set of maxi-
mization Problem (10) is not empty. We have now all the elements
to prove our first existence result.

PROPOSITION 1. Given any admissible complexity cost func-
tion c, an optimal computable contract with complexity costsc (a
solution to Problem (10)) exists.

Proof. Notice that whenever two contracts(r, k) and(r ′, k′) are
both feasible and are such that{r}(s, ds) = {r ′}(s, ds) for all s ∈ S,
then it must be thatG[{r}] = G[{r ′}]. From Lemma 1, we also know
that any feasible contract(r, k) satisfies

{r}(s, ds) ∈
⋃
s∈S
〉h(s)〈 ∀s ∈ S (16)

It then follows immediately thatG[·] can only take on a finite set
of different values as we let(r, k) vary across all possible feasible
contracts. From Assumption 5 we know also that a feasible contract
exists. Therefore Problem (10) has a solution. 2

The next result compares the solutions (in expected utility terms)
to the same contracting problem when there are no complexity costs
and when complexity costs have been taken into account.

Let an admissible complexity cost functionc be given. Now
consider a parametric class of contracting problems (obtained for in-
stance by varying the parties’ expected utilities indexed byλ ∈ 3).
Assume that for eachλ ∈ 3 a unique first best as defined in (2)
exists. Let this be denoted byr∗λ . Assume further that asλ varies
in 3 infinitely many (at least a countable infinity) distinct first best
sharing rules are obtained. Then the following result holds.

PROPOSITION 2. Whatever the admissible complexity cost func-
tion c there exists at least oneλ ∈ 3 such that the utility of the
optimal contract with complexity costsc is bounded away from the
expected utility of the first bestr∗λ , for at least one agenti = 1, 2.

Proof. From Lemma 1 we know that givenc any feasible con-
tract must satisfy{r}(s, ds) ∈〉h(s)〈. Since asλ varies we obtain
infinitely many distinct first best rulesr∗λ , andS is finite, for at least
ones ∈ S it must be thatri∗s,λ takes at least a countable infinity of



42 LUCA ANDERLINI AND LEONARDO FELLI

distinct values asλ varies. Let this set of distinct values be denoted
by ρ(λ, s).7 Given the cardinality of the sets it is impossible that
ρ(λ, s) ⊆ 〉h(s)〈. Therefore, for someλ ∈ 3 it must be the case
that any Turing machine which computes the sharing ruler∗λ is not
feasible in Problem (10). 2

The next result is of interest for two distinct reasons. First of all
it provides an example of a parametric class of problems to which
Proposition 2 applies. Secondly, it clarifies that Proposition 2 applies
to some parametric classes of contracting problems which yield a set
of computablefirst best sharing rules. For such parametric classes,
the difficulty of computing the first best when complexity costs are
taken into account is then clearly a result of the complexity costs
themselves, rather than of the possible non-computability of the first
best sharing rule.

PROPOSITION 3.There exists a parametric class of co-insurance
problems to which Proposition 2 applies and such that the first best
sharing rule is computable for allλ ∈ 3.

Proof.Consider the co-insurance contracting problem of Section
2. Assume that the total surplus is the same in each state of nature,
πs = π for every s ∈ S, and the default division of surplus is
such that the entire surplus is owned by agent 2 in states{1, . . . , n}
and by agent 1 in the remaining states of nature{n + 1, . . . , N}
where 16 n < N . We specify the form of the bargaining game
by assuming that the contractr is chosen by letting agent 1 make
a take-it-or-leave-it offer to agent 2. Agent 2 can accept or reject
the offer. He will choose to accept if and only if his ‘participation
constraint’ is met. Finally, we assume that the parties’ utilities are
not state dependent:Ui(ris , s) = Ui(ris ) for everys ∈ S and every
i = 1, 2. Problem (2) becomes:

max
r

N∑
s=1

U1(r
1
s )ps

s.t. r ∈ F
(17)

whereF is defined in (3).
By completely standard arguments the first best contract assigns

a constant share of the surplus to both agents. In other words,ri∗s =
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ri∗ for everys ∈ S and everyi = 1, 2. Moreover, the participation
constraint for agent 2 implicitly defines the first best share of surplus
for agent 2:

U2(r
2∗) = p U2(π)+ (1− p) U2(0) (18)

where p ≡ ∑n
h=1ph. Without loss of generality we can take

U2(0) = 0 andU2(π) = 1. Let now3 be the set of rational numbers
in the interval[0, π ], and takep = U2(λ) for a givenλ ∈ 3. The
first best contract is then:

r∗λ = (r1∗ = π − λ, r2∗ = λ) (19)

Consider now the parametric class we have just defined when an
admissible complexity cost functionc ∈ N is given. Proposition 2
applies. Indeed,3 contains a countable infinity of elements, and two
distinct values ofλ yield two distinct first best contracts. It follows
immediately from (19) and the fact that the surplusπ is a rational
number that the first best is computable for any rational numberλ ∈
3. 2

We shall now introduce a further assumption on complexity mea-
sures which we denote ‘no free transfer’ condition. We assume that
the only contracts which have zero complexity costs for all states of
nature are those contracts that leave the default division of surplus
unaffected. Formally

ASSUMPTION 6. For any(r, k)

{c}(r, k, s, ds) = 0∀ s ∈ S ⇒ {r}(s, ds) = ds ∀ ∈ S. (20)

We have now all the elements to prove our next result. Intuitively,
for any complexity measure in the class of measures that satisfy
Assumptions 1-6 it is possible to think of a contracting problem (in
particular of a default allocation of surplus) such that the best option
left to the contracting parties when complexity costs are taken into
account is not to write any contract at all. Moreover, such default
allocation of surplus differs from the first best contract.

PROPOSITION 4.LetG andc be given. Then there exists a default
division of surplus which is different from the first best contract and
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is such that the optimal contract with complexity costs which solves
Problem (10) is equal to such default.

Proof. Consider any contracting problem in which the default
division of surplus,d, does not coincide with the first best. Let now
(rd, kd) be the optimal contract with complexity costs, givend. If
rd = d there is clearly nothing more to prove. Assume therefore
thatrd 6= d. Let r∗d be the first best contract givend.

Sincerd 6= d, it follows from Assumption 6 that there exists a
state of natures ∈ S such that

{c}(rd, kd, s, ds) > 1 (21)

From (21), it then follows that there exists aξ > 0 (independent of
d) such that

G[r∗d ] − G[{rd}] > ξ (22)

Notice now that, using the continuity ofG and ofUi(·, s) for all
s and for alli, given anyγ > 0 it is possible to find ad such that

G[r∗d ] − G[d] < γ (23)

Sinceξ on the right-hand side of (22) is independent ofd, we can
now conclude from (22) and (23) that forγ sufficiently small it must
be the case that

G[d] > G[{rd}] (24)

Clearly, (24) contradicts the fact thatrd 6= d and therefore the proof
of the proposition is complete. 2

There is a sense in which Proposition 4 is not surprising. This
is apparent once we observe that any complexity cost function sat-
isfying Assumption 6 is such that any contract that implements an
allocation of surplus different from the default is associated with a
fixed cost. In other words there is a fixed cost which the parties have
to pay to modify the default with an explicit contract.

If we now parameterize the contracting problem with the default
allocation of surplus, we can show that by choosing a default allo-
cation ‘close’ to the first best we can make sure that for any size of
the contractual fixed cost it is not worth for the contracting parties
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to pay the fixed costs and modify the default allocation, which can
be implemented at zero complexity costs.

A symmetric result may now be proved. If instead of varying the
default allocation in Problem (10) we vary the relative price of the
complexity measure, we are able to show that for every given default
contracting problem in which complexity costs are accounted for, it
is possible to find a level of the relative price such that it is not worth
for the parties to write any contract and modify the default allocation
of surplus.

Consider a contracting problem with a given complexity cost
function c and take the default division of surplusd to be given.
Let such a problem be parameterized by the relative priceq as in
(11). In this parametric class of contracting problems the following
result holds.

PROPOSITION 5.LetG andc be given. There exists aq > 0 such
that the optimal contract with complexity costs is equal to the given
default and it is different from the first best contract.

Proof.Let rd be a contract which prescribes shares of the surplus
precisely equal to the default and which yields zero complexity costs
in any state.

From (9) and (21) we can clearly chooseq large enough so as to
ensure that for anyr which does not prescribe exactly the default is
not feasible. 2

We conclude the characterization of optimal co-insurance con-
tracts with complexity costs by analyzing how these contracts
change as the size of the complexity costs becomes arbitrarily small.
In particular we analyze the solution to Problem (10) as the relative
price q becomes infinitesimal. We obtain that the optimal contract
with complexity costs converges to the first best contract solving
Problem (2). ‘Continuity at the limit’ holds in our model.

For a given complexity cost functionc and default division of
surplusd consider the class of contracting problems parameterized
by q and denote(r∗q , k∗q) ∈ N2 the solution to Problem (10) for
any givenq. Recall thatr∗ denotes the first best contract solving
Problem (2). The following result holds.

PROPOSITION 6. Let G and c be given. Given anyε > 0 there
always exists a relative priceq and an optimal computable contract
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with complexity costsr∗q such that∣∣∣G[r∗] − G[{r∗q }]∣∣∣ < ε (25)

Proof. Consider partyi’s expected utility associated with the
optimal contract with complexity costs(r∗q , k∗q):

N∑
s=1

Ui(r
i∗
s,q, s)ps (26)

where(r1∗
s,q, r

2∗
s,q) = {r∗q }(s, ds). Expected utility (26) is bounded

below by the expected utility

N∑
s=1

Ui[(ri∗s − q ki∗s,q y), s]ps (27)

wherey = {c}(r∗q , k∗q, s, ds). Expected utility (26) is also bounded
above by the first best expected utility

N∑
s=1

Ui(r
i∗
s , s)ps (28)

whereri∗s is the i’s first best share in state of natures when com-
plexity costs are not considered. Notice that (27) is monotonically
decreasing inq while (28) does not depend onq. We can therefore
conclude that continuity of the mappingG[·] implies (25). 2

Therefore, the optimal contract with complexity costs remains
constrained efficient in the limit asq tends to zero.

7. CONCLUSIONS

In this paper we have provided a framework to analyze the impact
of general complexity costs associated with the writing and the im-
plementation of contracts on the optimal choice of the contracting
parties. In particular, we conclude that for any complexity measure
in a very general class there exist situations in which, because of
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complexity considerations, it is optimal for the contracting parties
to rely on the default division of surplus rather than try to mod-
ify it by means of an explicit contract. In other words to write an
incomplete contract. However, in the absence of any strategic role
for complexity costs, the incompleteness we obtain is constrained
efficient.

The framework we consider may be made more specific to obtain
the characterization of the optimal incomplete contract in a number
of possible ways. In particular we think that an interesting issue to
explore is whether it is possible to derive a theory of standardiza-
tion of contracts using the framework we have developed. In the
Introduction we highlighted the distinction between ex-ante com-
plexity costs, which are associated with the writing of the contract
and ex-post costs which are associated with the costs of identifying
the realized state of nature, computing and implementing the pre-
scriptions of the contract. The costs of computing the outcome (the
net trades) prescribed by the contract, however, can be interpreted
as either ex-ante or ex-post (or possibly both). If all computations
are carried out ex-ante, the contract can be viewed as containing a
‘look-up table’ which gives a prescribed net trade for every possible
state of nature. Alternatively, the contract can provide a set of rules
that the enforcing agency is required to follow to compute the net
trades prescribed by the contractafter the state is realized. Whether
the contracting parties will choose the first or the second alternative
will depend on the situation in which they operate.

If we denote withg(s) the costs associated with computing the
net trades prescribed by the contract when states is realized it is
natural to think that the costs we are considering will affect the
parties’ expected utilities as costs that depend on the realized state
of nature if they are faced only ex-post, at the implementation stage.
They will enter only as fixed costs if they are faced ex-ante at the
stage in which the contract is written. A natural upper-bound on
these fixed costs will be provided by the sum of the costs of com-
puting the outcome for every state of nature:

∑
s∈S g(s). Notice

that in a setting in which the contracting parties are risk neutral it
seems likely that they will choose to face these costs ex-post since∑
s∈S g(s)ps <

∑
s∈S g(s). This will not necessarily be the case

if the parties are risk averse. Notice that in the case the parties are
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infinitely risk averse (and the complexity costs vary across states)
they will always choose to face the fixed costs ex-ante.

Finally, it is worth noticing that in a setting like the one just de-
scribed there may exist an opportunity for a legal agency to provide
contracting parties with pre-specified tables which associate out-
comes to each state of nature; in a word with standardized contracts.
Whether this opportunity is profitable will clearly depend on how
common the contracting situation is. In particular it may become rel-
evant whether there exists a whole set of situations which are ‘close’
but not identical to the contracting situation for which the standard-
ized contract is available. Clearly this will be a situation in which
complexity considerations may lead to contractual incompleteness
of a less extreme form than the one we derive in the paper.

ACKNOWLEDGMENTS

We wish to thank an anonymous referee, Ed Green, John Moore,
Ariel Rubinstein, Oved Yosha, and seminar participants at Cam-
bridge, LSE, Tel-Aviv, Hebrew University of Jerusalem, the 1995
Winter Symposium of the Econometric Society and the European
Summer Symposium in Economic Theory in Guerzensee for in-
sightful comments. Financial support from the Suntory and Toyota
International Centres for Economics and Related Disciplines is
gratefully acknowledged. We are solely responsible of any remain-
ing errors.

NOTES

1. We revise this distinction to some extent in the Conclusions when we touch
on the issue of ‘standardized’ contracts.

2. We denote the set of rational numbers with the symbolQ.
3. See Proposition 1 of Anderlini and Felli (1994). For an explicit treatment of

the problem with a countable state space, see also Proposition 1 of Anderlini
and Felli (1993).

4. The first two assumptions below are well known in the mathematical liter-
ature on recursive function theory. They are often referred to as the Blum
(1967) axioms for dynamic complexity measures. The last two assumptions,
in particular Assumption 4, are a further restriction which we impose on the
class of complexity cost functions which we consider here.



INCOMPLETE CONTRACTS AND COMPLEXITY COSTS 49

5. An alternative way to proceed would have been to impute the complexity costs
to the parties as a direct ‘out-of-pocket’ expense, either in terms of utility or
in terms of the resource which is the object of the risk-sharing agreement. All
the results which we report below would still be valid in these cases.

6. In general we could have formulated the parties’ problem with complexity
costs using a state-by-state arbitrary upper-bound on the overall amount of
complexity costs that it is feasible for a contract to generate. All our result in
Section 6 would still hold.

7. Recall that when complexity costs are not accounted for, Problem (2), the set
of first best sharing rulesρ(λ, s) is independent ofds .

REFERENCES

Abreu, D. and Rubinstein, A. (1988), The structure of Nash equilibrium in
repeated games with finite automata,Econometrica56: 1259–1281.

Aghion, P. and Tirole, J. (1997), Formal and real authority in organizations,
Journal of Political Economy,forthcoming.

Aghion, P., Dewatripont, M. and Rey, P. (1994), Renegotiation design with
unverifiable information,Econometrica62: 257–282.

Anderlini, L. (1989), Some notes on church’s thesis and the theory of games,
Theory and Decision29: 19–52.

Anderlini, L. and Felli, L. (1993), Incomplete written contracts: undescrib-
able sates of nature,Theoretical Economics Discussion Paper TE/93/263,
STICERD, London School of Economics.

Anderlini, L. and Felli, L. (1994), Incomplete written contracts: undescribable
sates of nature,Quarterly Journal of Economics109: 1085–1124.

Anderlini, L. and Felli, L. (1997), Costly coasian contracts, C.A.R.E.S.S. Working
Paper No. 97-11, University of Pennsylvania.

Blum, M. (1967), A machine-independent theory of the complexity of recursive
functions,Journal of the Association of Computing Machinery14: 322–336.

Chung, T. Y. (1991), Incomplete contracts, specific investments, and risk sharing,
Review of Economic Studies58: 1031–1042.

Cutland, N. J. (1980),Computability: An Introduction to Recursive Function
Theory. Cambridge University Press, Cambridge.

Dye, R. A. (1985), Costly contract contingencies,International Economic Review
26: 233–250.

Grossman, S. J. and Hart, O. D. (1986), The costs and benefits of ownership:
a theory of vertical and lateral integration,Journal of Political Economy94:
691–719.

Hart, O. D. and Holmström, B. (1987), The theory of contracts, in T. F. Be-
wley (ed.),Advances in Economic Theory, Fifth World Congress, Cambridge
University Press, Cambridge.

Hart, O. D. and Moore, J. (1988), Incomplete contracts and renegotiation,
Econometrica56: 755–785.



50 LUCA ANDERLINI AND LEONARDO FELLI

Hart, O. D. and Moore, J. (1990), Property rights and the nature of the firm,
Journal of Political Economy98: 1119–1158.

Maskin, E. and Tirole, J. (1996), Dynamic programming, unforseen contingen-
cies, and incomplete contracts, Harvard University (mimeo).

Nöldeke, G. and Schmidt, K. M. (1995), Option contracts and renegotiation: a
solution to the hold-up problem,RAND Journal of Economics26: 163–179.

Piccione, M. (1992), Finite automata equilibria with discounting,Journal of
Economic Theory56: 180–193.

Rogers, H. (1967),Theory of Recursive Functions and Effective Computability.
McGraw-Hill Book Company, London.

Rubinstein, A. (1986), Finite automata play the repeated Prisoner’s Dilemma,
Journal of Economic Theory39: 83–96.

Rubinstein, A. and Piccione, M. (1993), Finite automata play a repeated extensive
game,Journal of Economic Theory61: 160–168.

Segal, I. (1995), Complexity and renegotiation: a foundation for incomplete
contracts, Harvard University (mimeo).

Tirole, J. (1994), Incomplete contracts: where do we stand? Technical report,
IDEI, Toulouse.

Addresses for correspondence:
Leonardo Felli, The London School of Economics & Political Sciences, Depart-
ment of Economics, Houghton Street, London WC2A 2AE, United Kingdom.
Phone: +44 71 405-7686; Fax: +44 71 831-1840;
e-mail: l.felli@lse.ac.uk

Luca Anderlini, Faculty of Economics & Politics, Sidgwick Ave., Cambridge
CB3 9DD, United Kingdom. Phone +44 1223 330153; Fax: +44 1223 335475;
e-mail: la13@econ.cam.ac.uk


