INCOMPLETE WRITTEN CONTRACTS:
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This paper explores the extent to which the incompleteness of contracts can be
attributed to their formal nature: the form, usually written, that contracts are
required to take to be enforceable in a court of law by legal prescription, common
practice, or simply the contracting parties’ will. We model the formal nature of
state-contingent contracts as the requirement that the mapping from states of the
world to the corresponding outcomes must be of an algorithmic nature. It is shown
that such algorithmic nature, although by itself is not enough to generate
incomplete contracts, when paired with a similar restriction on the contracting
parties’ selection process yields endogenously incomplete optimal contracts.

1. INTRODUCTION

I.1. Overview

Many contracts specifying state-contingent outcomes that
economic agents write to regulate their transactions are incom-
plete. They neglect information about the state of the world that is
in principle available to the parties to the contract and would be
optimal for them to include. This paper explores the extent to
which contracts’ incompleteness could be attributed to the formal
nature of contracts: the form, usually written, that contracts are
required to take by legal prescription, common practice, or simply
the contracting parties’ will, to be enforceable in a court of law.!
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1. For example, in American common law a number of contracts require the
formality of writing to be enforceable. These contracts are listed in the Statute of
Frauds and the Sales Act, modified by the Uniform Commercial Code, and include:

‘... any special promise, to answer damages out of his own estate; . . . any

special promise to answer for the debt, default, or miscarriage of another

person; . . . any agreement made upon consideration of marriage; . . . any
contract or sale of lands, tenements or hereditaments, or any interest in or
concerning them; . . . any agreement that is not to be performed within the
space of one year from the making thereof; . . . [any] contract for the sale of
any goods, wares and merchandize, for the price of [$500 or more] ...
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Intuitively, it is clear that not every agreement can be written
in a contract. For example, no contract can be infinitely long.
Hence, every agreement that requires an infinitely long descrip-
tion, say of the circumstances in which the agreement applies,
cannot be written, and consequently enforced. Consider a written
contract consisting of a finite number of ‘“‘clauses.”’ Once the state
of nature is realized, the parties (or the enforcing agency) will
examine the available ‘‘evidence” about the state of the world that
has occurred and identify which clause(s) apply to the case at hand
and hence what outcome is prescribed by the contract. We take the
view that this means that the mapping between states and
outcomes that the contract embodies must be of an algorithmic
nature. In this paper we examine the consequences of formal
imposing this restriction on state-contingent contracts.

The formal notion of algorithmic which we adopt is that of
general recursive functions or effectively computable functions.
Intuitively, a function is effectively computable if there exists a
finite device (an algorithm) that is capable of computing each of its
values in a finite number of steps. There is a general consensus in
the mathematical literature that the class of general recursive
functions captures the widest possible intuitive notion of effective
computability.?2 The class of general recursive functions coincides
with the class of functions that can be computed by a class of
abstract computing devices known as Turing machines. In the
paper we model the formal nature of contracts requiring the
mapping between states of the world and prescribed outcomes to be
general recursive, or equivalently to be computable by a Turing
machine.?

Once the restriction of computability is introduced, it is not
difficult to see that some contracts simply cannot be written. This
is equivalent to the statement that not all functions are in fact
computable. Consider, for instance, a contract that prescribes two
distinct outcomes according to whether the state of nature takes

except the buyer shall accept part of the goods so sold, and actually receive

the same, or give something in earnest to bind the bargain, or in part of

payment, . ..”
The agreement for these transactions “. . . shall be in writing, and signed by the
party to be charged therewith, or some other person thereunto by him lawfully
authorized” [Calamari and Perillo 1987, p. 775].

2. See, for instance, Davis [1958], Rogers [1967], and Cutland [1980], or for a
brief exposition, Anderlini [1989].

3. Throughout the paper, we shall use the words general recursive, effectively
computable, and computable (by a Turing machine) in an equivalent way.
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one particular critical value (or set of values) or not.* In this case a
computable description of the contract necessarily contains an
exact description of the critical state. Therefore, the fact that there
exist states of nature (or events) which cannot be fully described by
a finite algorithm directly entails that some contracts are not
computable, and hence cannot be written.

The impossibility to write down some contracts, however, is
not enough to generate genuinely endogenously incomplete con-
tracts. The reason is that, under mild assumptions, it turns out
that any contract (in a very general class) can always be approxi-
mated—in, terms of the expected utility that it yields to the
parties—by a sequence of computable ones. This is what we call the
approximation result. An intuitive account is as follows.

In state-contingent contracting problems, some very natural
continuity and boundedness properties of the contracting parties’
preferences hold. Given a state of nature, in fact, it is hard to argue
that the utility of either party is anything but continuous in the
‘“share of the pie’’ which the contract prescribes. In addition, the
contracting parties are interested only in the expected utility they
derive from the contract, and a computable contract can always be
constructed to partition the state space into an arbitrarily fine
“grid,” and to yield any desired approximate share of the pie to
either party. Hence, in expected utility terms it is always possible to
approximate the first best with a computable contract, even if the
first-best contract itself is not computable. Thus, on the one hand,
parties are not satisfied with any contract they can write; on the
other hand, the only contract that satisfies the parties cannot be
written since it is not computable. In formal terms, the expected
utility maximization problem of choosing a computable contract
does not have a solution. We expand considerably on the approxima-
tion result in Section IV below.

The approximation result is one way to read the contribution
of this paper. In the absence of specific ‘‘complexity costs’’ such as
the cost of writing ‘“longer contracts’ or perhaps the costs of
making ‘“more complex’’ statements within the text of a contract,
the restriction that the parties must be capable of writing down
their agreement is not enough to generate genuinely incomplete
contracts. As we mentioned above, this hinges crucially on some
natural continuity and boundedness properties of a state-

4. For instance, in a standard insurance or coinsurance contract, the critical
state may be the “accident’ state.
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contingent contracting problem. When the object of the contract is
the ‘“performance” of either, or both, parties, continuity may
become a less compelling assumption. Hence, the approximation
result may be destroyed, and the computability restriction by itself
may generate genuinely incomplete contracts. We explore the
nature of written contracts over parties’ performance in a compan-
ion paper [Anderlini and Felli 1993b].

The main result of this paper, however, is that under some
additional restrictions which we view as plausible, agents will
indeed write incomplete state-contingent contracts. To generate
this result, we couple the restriction that contracts must be of an
algorithmic nature with a similar restriction on the agents’ con-
tract selection process. The formality of the legal system requires
parties, or their lawyers, when choosing among different contracts
to be ready to present formal arguments to support their choice.
We model this feature requiring the process by which contracts are
chosen to be itself algorithmic or computable. With this additional
restriction we are able to show (see Section V) that there exist cases
in which the parties will end up writing an endogenously incom-
plete contract. The intuition behind this second result is as follows.

Consider a contracting problem in which the first best identi-
fies one critical state of nature. Consider now a sequence of
computable contracts that approximates the parties’ first-best
expected utility. From this sequence of computable contracts we
can recover ‘‘finer and finer”’ approximations of the critical state of
nature. If a computability restriction is imposed on the selection
process, the resulting approximating sequence of computable
contracts is itself computable. Hence, it follows that we must be
able to approximate in a computable way the critical state. Since
there exist states of nature (or events) which cannot be approxi-
mated in a computable way, it follows that it is not always possible
to approximate the parties’ first-best expected utility. The result is
a genuinely incomplete contract.

We call the states of nature that cannot be approximated in a
computable way algorithmically undescribable or simply undescrib-
able states. Intuitively, a state (or an event) is undescribable, if it is
not possible to generate with a finite algorithm, a list of its
“‘characteristics.” Any attempt to use a finite algorithm to describe
an undescribable state, will inevitably leave out some relevant
parts of the exact description of the state. We find this to be
consistent with the intuitive notion of an incomplete contract.
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We define an incomplete contract as one that takes into
account less than the available information to the parties which—in
a world where no restrictions (algorithmic or otherwise) are
imposed on contracts—it would be optimal for the parties to
include. We make this notion precise and discuss it further in
Section III below. Contracts are incomplete because the parties
lack the technology to describe in sufficient detail some critical
states of nature and hence leave some valuable information out of
the contract. This is intuitively consistent with the cause of
contract incompleteness mentioned, for instance, in Hart and
Moore [1988].

In virtually all the available literature the operational defini-
tion of an incomplete contract is that of a contract which is silent,
makes no prescriptions, for some states of nature.> On the face of
it, this seems quite radically different from the formal definition of
incompleteness we put forward here. We only consider contracts
that do make a prescription for all possible states of nature.
Further, we define incompleteness as a property of the partition of
the possible states of nature that the contract induces since it is
this partition which characterizes how much of the relevant
information is included in the contract itself. However, we believe
that previous definitions and the one we propose are not in
contrast. Insofar as the parties entering a silent contract are aware
of the ex post mechanism that will operate when uncontracted
contingencies arise, it is always possible to view a silent contract,
together with the associated ex post mechanism, as a contract
which makes prescriptions for all states of nature, but which is
constrained to use the ex post mechanism for some relevant subset
of the possible states. If it is impossible to perfectly ‘‘fine tune” the
ex post mechanism, this contract may end up not distinguishing
sufficiently finely among some relevant states of nature. It may end
up including less information about the states of nature than
would be optimal for the parties to include. Hence, it may end up
being incomplete according to the definition proposed in this paper.
We return to the relationship between the definition of incomplete-
ness proposed here and silent contracts after we make our defini-
tion explicit in Section III below.

Courts play a completely passive role in the world we envisage
here. We focus on situations in which contracts must be written to
be enforceable. The enforcement mechanism is completely mechani-

5. Allen and Gale [1992] and Spier [1992] are notable exceptions.
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cal, however. The courts (if this is the enforcement mechanism in
use) simply ascertain what the contract prescribes after a state of
nature is realized and ensure that the prescription is enforced.
Given that the contracts we obtain are incomplete, in the sense
that they include less information than would be optimal in a
first-best world, this leaves open the possibility that our approach
may be used to explain an active role for the courts which has
proved elusive to previous work. In fact, if the contracting parties
are constrained by what they can write into a contract, but the
court can make ‘“finer”” distinctions than they can, it is possible
that they will intentionally rely on the court’s “interpretation” of
their agreement. A model of the court’s behavior, and of the
contracting parties’ ability to manipulate and forecast it, would
__need to be grafted onto the analysis we carry out here.

The material is organized as follows. The basic model is
presented in Section II. Section III formally introduces our defini-
tion of contract incompleteness. Section IV concentrates on the
approximation result mentioned above. The main result of the
paper on endogenously incomplete contracts is presented in Sec-
tion V. In this same section we also characterize the form that
optimal incomplete contracts take in the case of a simple coinsur-
ance problem. Section VI offers some concluding remarks. An
Appendix contains some of the proofs. Before moving to the basic
model we briefly discuss some related literature.

1.2. Related Literature

Since the Simon [1951] and, more recently, the Grossman and
Hart [1986] seminal contributions, a number of papers have
discussed incomplete contracts. The main branch of this literature
assumes that contracts are incomplete and proceeds to analyze the
consequences of incompleteness on the economy. This literature
concentrates on the role of available mechanisms and institutions
in mitigating the inefficiencies generated by contract incomplete-
ness, such as vertical and lateral integration [Grossman and Hart
1986] and the optimal allocation of ownership rights on physical
capital [Hart and Moore 1990]. Our model differs from these
papers since we do not assume contract incompleteness but we
derive it endogenously from the restriction imposed on the set of
possible agreements by the algorithmic nature of a contract and of
the selection process.

Hart and Moore [1988] and a number of subsequent papers
[Chung 1991; Aghion, Dewatripont, and Rey 1994; Noldeke and
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Schmidt 1994] ask the question of whether one of the causes of
contract incompleteness is the fact that the outcome that the
parties wish to implement through a contract may be, at least in
part, unobservable by the enforcing agency (the court). They
conclude that the parties will write a silent contract; it will leave
out some details that the court cannot observe. Whether the
implemented outcome will differ from the socially efficient one,
seems to be highly dependent on how much exactly the court
observes of the contracted transaction. In our framework, all the
parties (enforcing agency included) can, in principle, observe all the
relevant variables. They are constrained only by what they can
write into the contract.

Finally, few recent papers have derived endogenously contract
incompleteness focusing on complementary, but different from
ours, causes for incompleteness: the costs of specifying contingen-
cies [Dye 1985]; the signaling effect—in a world of asymmetric
information—of the parties’ willingness to include a contingency
in the contract [Hermalin 1988; Aghion and Hermalin 1990; Allen
and Gale 1992; Spier 1992]; limited rationality defined in terms of
psychological costs of evaluating the consequences of the parties’
actions and decisions [Lipman 1993], and finally the contracting
parties’ strategic advantage from the specification of an incomplete
contract in the first of a multistage contract bargaining procedure
[Busch and Horstmann 1992].

II. THE MODEL

I1.1. The General Problem

We consider a very simple contracting problem. Two risk-
averse parties agree ex ante on a contract that allows them to share
the risk associated with the common random environment in
which they operate. Let the two parties be indexed by i = 1, 2 and
endowed with utility functions of the consequence ¢, assumed for
simplicity to be one-dimensional V;(c). The state of nature s indexes
the random environment parties face and takes values on a
continuous, convex, and compact state space, ‘“normalized” to be
the closed unit interval .# = [0,1].6 The parties’ problem is to find
an agreement that specifies a sharing rule x(-) of the common
surplus yielding f;(x(s);s) as the consequence to party i in state of
nature s. To simplify the statement of the problem, we can define

6. All the results presented in our analysis generalize to the case of a countably
infinite state space. We refer the interested reader to Anderlini and Felli [1993a].
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the following indirect utility function of sharing rule x(s) and state
of nature s: U;[x(s);s] = V;[f;(x(s);s)]. For example, in the case in
which the state of nature affects the utility of each party changing
the size of the surplus w(s) which the parties are agreeing to split,
the indirect utilities take the form Uj[x(s)] for one party and
U;[w(s) — x(s)] for the other.

We assume Uj(x;s) to be bounded from above and from below
and continuous in x for any given s € ., We also assume that the
two parties have ex ante symmetric but incomplete information
concerning the state of nature s: they share the common prior
probability measure p(-) with support .. Throughout the rest of
the paper we focus on properties that are valid up to a p-measure
zero set of states of nature. So two sharing rules are considered
equal if they are the same except (possibly) for a set of states that
has p-measure zero.

We use a fairly general formulation of the two parties’
risk-sharing problem. An optimal sharing rule x*(:) is character-
ized by the following:

1) x*() € argmax Z[x()] subject to x(-) € 7,
where

2) Zkx()] = G{L Uil[x(s);s] dp(s); LUz[x(s);s] du(s)},

and G:R? — R is a general function that may take different
characterizations depending on the bargaining process which leads
to the risk-sharing agreement. In particular, such function may
easily accommodate the standard Nash bargaining approach. The
set Z, on the other hand, is a general feasible set that may
incorporate restrictions such as x(s) > 0, for every s € .# or other
technical constraints which guarantee the existence of a solution.
Further, for given U;(-;-) and w.(-) the constraint x(s) € % could be

interpreted as the constraint _[5, U;[x(s); s1du(s) > U which allows
us to reinterpret problem (1) as the standard coinsurance problem:

@) max [ Ulx(s);s] du(s)
subject to fy Uijlx(s);s] du(s) > U j#i,

where U is the minimal level of utility that induces party j to
accept the contract x(-).
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A solution to problem (1) is called first best. We will denote the
set of solutions to problem (1) by X*, with typical element x*(-).
These first-best sharing rules are the benchmarks of our analysis.
We shall take these benchmarks, hence problem (1), to be “well
behaved’’ and as ‘‘simple’’ and possible. First, we assume that X*
contains only one element.

AssUMPTION 1. The utility functions U;(-;),E = 1,2), the probabil-
ity measure u.(-), the function £ (-), and the feasible set . are
such that a solution to problem (1) exists unique (up to a
p-measure zero set of states).

Second, we assume that the maximand function Z(-) satisfies the
following mild continuity properties.

AsSUMPTION 2. The function G : R2 — R defined as in equation (2)
is such that given any sequence {(Uy,;Us,)};., converging to
(U%;U%), we have that the sequence {G(U,,,;Us,)}:_, converges
to & [x*()]

A substantial part of our analysis focuses on sharing rules that take
only a finite number of (finite) values over .. These are finite step
functions. It will be convenient to assume that the feasible set & is
sufficiently rich as to contain all finite step functions “sufficiently
near’’ the first best.

AssUMPTION 3. There exists a positive real number e such that if
x(-) is a finite step function and £ [x*(-)] — Z[x(-)] < € then
x() e F7

11.2. Written Contracts as Computable Sharing Rules

It is widely agreed that the notion of algorithmic function
captured by Turing computability is the widest possible one. We
take the view that a good way to formalize the restrictions imposed
on a contract by the fact that it must be possible to write it down, is
to require that it should be algorithmic in nature. Intuitively, a
written contract is a finite set of clauses that, given a realization of
the state of nature, yield an outcome in a finite number of “steps.”
In our context, a finite number of steps (an be interpreted as the
fact that, examining the contract for a given realized state of
nature it yields an outcome in finite time. It is easy to imagine a

7. If # contains only functions with, say, x(s) > 0 for all s € ., then this
assumption should be modified to read if x(-) is a finite step function satisfying
x(s) > 0and Z[x*(-)] — Z[x()] < €, thenx(:) e 7.
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written contract that, for instance, ‘“loops’’ in the sense that clause
a calls on clause B and vice versa. We exclude such contracts by
assumption. It should also be emphasized that the notion of
algorithmic which we employ to formalize the nature of written
contracts may in fact be too wide. It is quite possible that further
legal restrictions apply to what can be written into a contract or
not. Since all our results hold for any class of functions that is
contained in the class of Turing computable functions, these
further restrictions do not affect our analysis below.

Before proceeding further, we introduce some notation concern-
ing Turing machines. A Turing machine is identified by its
program. A program is a finite string of symbols obeying some
syntactical rules that we shall not specify here.® It follows that
Turing machines, and hence computable functions, can be put in a
one-to-one (computable) correspondence with the natural num-
bers.® This is a standard technique known as Gddel numbering
(see, for instance, Cutland [1980] or for a brief exposition Anderlini
[1989]). In the case of a finite set of symbols only being available,
the numbering procedure can be intuitively thought of as assigning
an order to the symbols to start with and then ordering the strings
““alphabetically.” To each string then there corresponds a number
given by its place in the dictionary of all finite strings. We shall
simply identify each machine with its Godel number. Throughout
the paper we will use the notation {x}(s) to indicate the result of the
computation of Turing machine x € N with input s € .. It should
be noted that the computation of a Turing machine on a given
input may not halt. Intuitively the computation may loop. This will
become of interest only in Section V below.

~ I1.3. Computable Contracts

We now describe intuitively the ‘“mechanics’ of our written
computable contracts. The formal details are lengthy, and hence
they are relegated to the Appendix.

The “input” of the contract is given by the realized state of
nature s. We consider the binary expansion of the real number s,
which can always be thought of as a potentially infinite sequence of
zeros and ones. Care should be taken since some real numbers

8. Any text on computability will give examples of such rules; see, for, instance,
Cutland [1980].

9. This of course immediately proves that there are noncomputable functions
since there are 2% functions from N into N but only countably many are in fact
computable.
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allow more than one binary expansion; in such case we assume that
the expansion containing the largest number of zero digits is used.
This infinite sequence can be thought of as the potentially available
“evidence” or information about the state of nature s. This parallel
is even more convincing if we interpret—as we do throughout the
rest of the paper—the binary expansion of s in the following way.
The realized state can be described by a countably infinite number
of characteristics each of which can either be present or not in the
description of the state of nature in question. The binary expansion
of s can then be thought of as the (potentially infinite) ordered list
of yes (1) or no (0) describing which characteristics are present in
the description of a particular state of nature. Note that the
restriction that the procedure embodied in the contract has to
deliver an answer in finite time implies, for example, that only a
finite amount of ‘“‘evidential data” may be used, although “how
much” of it will be used depends on the contract itself and
potentially on the realized state of nature as well.

Given the input s, the contract can then be thought of as
consisting of two distinct procedures: an information-gathering
procedure that given the evidence delivers the finite amount of
evidential data to be used by the contract, and an outcome
procedure that actually determines the value of the sharing rule.

The information-gathering procedure can be described as
follows. We start with no information. The procedure then specifies
where to look first—in other words, which characteristics (or
digits) of the available evidence to scan first. On the basis of the
result of the first round of scanning, the information-gathering
procedure tells us which set of digits to look at next, and so on for
any finite number of rounds. We require the information-gathering
procedure to be computable in the sense that the procedure itself
can be embodied in a Turing machine, and, of course, to halt after a
finite number of rounds. The set of all digits actually scanned (and
their “‘positions”) in the expansion of s is the evidential data
gathered when the state of nature is s and constitutes the input of
the outcome procedure. This part of the contract simply ‘‘com-
putes” the value of the sharing rule as a function of the output of
the information-gathering procedure. Since the outcome procedure
is required to be computable, the value of the sharing rule that it
can generate is itself described by a finite string of digits. We take
the result of the contract to be a rational number with a finite
number of nonzero digits. We will refer to such numbers as
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“regular” rational numbers, denoted by @ throughout the rest of
the paper.

It is appealing to interpret the two components of our written
contracts as the two main phases of the decision process of an
enforcing agency such as a court. The “trial” starts with an
information-gathering phase aimed at revealing to the court the
available evidence. In a finite amount of time this phase is followed
by the decision phase that delivers, again in finite time, the final
decision of the court on what the contract actually prescribes
corresponding to the realized state of nature.

It turns out that the set of sharing rules which can be thought
of as an information-gathering and outcome procedure pair is
equivalent to the set of sharing rules which can be computed by a
Turing machine. Since the two definitions of a written contract are
equivalent, we will use them interchangeably according to analyti-
cal convenience throughout the paper. The two formal definitions
are as follows. (Their equivalence is proved in the Appendix.)

DEFINITION 1. A computable contract is a pair (f,g), where fis a
computable information-gathering procedure yielding, for any
given s, a finite set of digits with their ‘“positions’ in the
binary expansion of s, and g is a computable outcome proce-
dure yielding an outcome that is a regular rational number
cE @.

DEFINITION 2. A computable contract is a (“two-tape”) Turing
machine, whose Gédel number will be denoted by x € N
throughout the paper. The machine x is assumed to be such
that for every s € .# its output ¢ = {x}(s) is defined and c € £.1°

I1.4. Properties of Computable Sharing Rules

We are now in a position to partially characterize the proper-
ties of a computable contract. Intuitively, computability constrains
the parties to sharing rules that are step functions. Further, it
must be possible to “describe” the endpoints of these step func-
tions with regular rational numbers. In what follows, it is much
easier to think of computable contracts as a pair of computable
functions (f,g) satisfying Definition 1.

Recall that we require the information-gathering procedure to
halt after a finite number of rounds. Hence, the information-

10. Directly from Definition 2 we learn that constraining the parties to choose
a computable contract reduces the cardinality of their feasible set of contracts to be
countably infinite.
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gathering procedure yields a finite subset of the digits of s for any
s € .% Intuitively, one would then expect that, for any s in the
interval comprising all s € .# which have identical digits in the first
n positions, a given contract should yield a constant value. Hence,
one would expect a computable contract to partition . into
well-behaved intervals. Since whenever more than one binary
expansion is available for a real number we choose the one with the
largest number of zeros, one would also expect the intervals to be
closed below but open above. This intuition turns out to be correct.
We formalize this statement in Lemma 1 below. Some more
notation is needed first.

Consider the set of pairs generated by the information-
gathering procedure of a computable contract x € N for any given
state of nature s. Typically such a set takes the form,

(4) f(s) = {(snlyn1)9(sn2’n2)’ ) (snk;nk)}’

where s, € {0,1} is the n;th digit of the binary expansion of s. Given
f(s) we define

n({x},s) = max {ny € f(s)}.

In other words, n({x},s) is the right-most position in the binary
expansion of s contained in f(s). Further, we define ¢({x},s) as the
real number that has as binary expansion the string of the first
n({x},s) digits of s and zeros thereafter. Last, for any computable
contract x € N and any state of nature s, let ®({x};s) represent the
following half-open (except if the upper limit is 1) interval:

®([x};s) = [d({x},9),0({x},8) + 27211 N [0,1].

It is now possible to formalize our claim, proved in the Appendix,
that a computable contract must partition .% into well-behaved
half-open intervals.

LeEMMA 1. Every computable contract {x}(-) takes the form of a step
function that partitions . into a collection of disjoint half-
open intervals having regular rational endpoints. In other
words, given any computable contract {x}(-), we have

(i) For every s € .% and every s’ € .%, s’ € ®({x};s) implies
that {x}(s") = {x}(s).
(ii) The interval ®({x};s) is well defined for every s €
(iii) For verys €.% and s’ € .%, either ®({x};s) = ®({x};s"), or
®({x};s) N P({x};s’) = B.
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A partial converse of Lemma 1 holds. Lemma 2 below states
that given any finite collection of disjoint half-open intervals with
regular rational numbers as endpoints and any corresponding set
of regular rational values, there exists a computable contract which
takes precisely these values on each of the intervals. This is the key
to the approximation result discussed in Section IV below.

LEMMA 2. Given any ordered finite set of regular rational numbers
in.%:s9 < 8; <+ <8, (sg=0,s, =1) and any finite set of
regular rational values, v; € ¢, (i = 1, ..., n), there exists a
computable contract x € N such that

SE(si_,8) = xjs)=v;, Vi=1,...,n.

Proof of Lemma 2. Let 7i be the position of the right-most 1 in
the binary expansion of any s;. Ensure now that the function f
corresponding to x is such that given any s € .% exactly the first A
digits of s are scanned. On the basis of this scanning it is always
possible to determine, for any state of nature s, which is the index
i=1,...,nsuchthats € (s;_;,s;). Hence, since the constructed set
of half-open intervals is finite, a g function that attributes the
corresponding value v; to each interval is certainly computable.

QED

We conclude this section by noting that it is easy to construct
extremely simple examples of first-best sharing rules that cannot
be implemented by a computable contract. Consider, for instance, a
familiar coinsurance problem whose first-best sharing rule takes
the value / > 0 for any state of nature s on the unit interval except
for the state s, corresponding to which it takes a strictly smaller
. value h:

h ifs=s
5) x(s) = l otherwise,

where & < [. This sharing rule is clearly not computable by
Lemma 1.

ITI. CONTRACT INCOMPLETENESS

II1.1. A Definition

In order to test whether the computability restrictions we
impose on contracts yield incomplete contracts, we need a formal
definition of what an incomplete contract is.
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We take the view that a satisfactory definition should apply to
any type of contract, computable or not, and should capture the
intuitive notion that a contract is incomplete if it neglects informa-
tion about states of nature which would be optimal for the
contracting parties to include.

Some examples are the best way to rule out some possible
definitions that may seem natural at the outset. Consider the case
of a simple coinsurance problem yielding a first-best sharing rule as
in (5). One would want to call incomplete a contract of the type,

_ h' ifs' <s<s”
(6) x(s) = U otherwise

with s’ < s < s" amd A’ < I'. This is because it is intuitively
appealing to say that in such a contract the ““accident’ state s has
been “incompletely’’ or “loosely’’ defined. It is clear, however, that
the partition of . induced by such x(-) is neither coarser nor finer
than the partition induced by the first-best contract.!! We conclude
that it would not be satisfactory to define incomplete contracts
simply as contracts that ‘‘induce a partition of the state space
which is strictly coarser than the one induced by the first best.”

Concrete examples of contracts that use ‘“‘coarse’ clauses to
define loosely a set of states which is payoff relevant seem to be
common in practice. Consider, for instance, the common clause
guaranteeing compensation against ‘“‘pain and suffering.”’ A con-
tract prescribing payment in case of pain and suffering can be seen
as using a loose definition of a set of states that while quite
precisely defined in the minds of the contracting parties is hard to
describe precisely in a written contract. The contract is incomplete
in the sense that it incompletely describes the relevant set of states
by use of the pain and suffering formula. Another example of
contractual statements that only represent approximate and incom-
plete descriptions of some relevant set of states is the “act of God”
clause that, for instance, dispenses airlines from their obligation to
supply the agreed-upon services. Clearly, the exact description of
the events that are an act of God is missing, but the set of possible
states of nature that fits the definition, however, is restricted by
the statement.

11. Notice that in the example above the fact that the accident state is
characterized by a unique state of nature is completely inessential. In fact, a similar
example may be constructed in which the event accident is defined by a set, for
example, a whole interval, of states of nature [a,b].



1100 QUARTERLY JOURNAL OF ECONOMICS

A second difficulty would arise if we defined as incomplete only
those contracts that partition the state space in a way coarser than
the first best. Consider the standard example in which the first best
requires the parties to write a sharing rule contingent on two
variables. Any contract that specifies a sharing rule contingent
only on one of the two variables should reasonably be called
incomplete. However, in this case again the partition of the
(two-dimensional) state space that the single variable contract
induces may well be neither coarser nor finer than the partition
induced by the first-best contract.

In view of the difficulties we have outlined, we propose to call a
contract incomplete if it partitions the state space in a manner that
could only be optimal if the contract design were‘constrained by the
parties’ inability to distinguish among relevant states of nature.
We start writing down this definition formally and then introduce a
simpler but equivalent definition that we will use in the remainder
of the paper.

First, we need some additional notation. Let IT be the set of all
possible partitions of the state space .. 12 Let, # € II be a partition
of the state space ., and .7 (%, s) the element of the partition & to
which a given state of nature s belongs. We denote by & the
partition of the state space whose elements are the singleton of
each state of nature so that .# (% ,s) = (s} for every s € .. Define
now P(x) € II as the partition of the state space . induced by the
contract x(-). Formally, P(x) is defined by

(7N F(P(x),s) = {s' € Z|x(s") = x(s)}.

We use the notation # > £’ to mean that % is equal to or coarser
than #’, or equivalently %' is equal to or finer than .

Consider the following version of problem (1), where the
sharing rules the parties may choose vary only across different
elements of the partition #:

(8) n;ng[ LUl[x(f(g’,S));S]du(s); LUz[x(J(%S));S]du(s)

subject to x() €

Let X() be the set of sharing rules x(-) that solve problem (8). By
construction, every x(-) € X(?) must be invariant with respect to
states of nature that belong to the same element of . Therefore,
the solution(s) to problem (8) can be viewed as the contract(s) that
the parties would choose if they were constrained not to distin-

12. We only consider partitions whose elements are Lebesgue-measureable sets.
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guish between states which belong to the same cell of the partition
2. The parties are informationally constrained by 2. This con-
straint clearly ‘“vanishes” if in (8) we set # = 2. In other words,
X(2) coincides with the set of first-best sharing rules X*. We are
now ready for a formal definition of incomplete contracts.

DEFINITION 3. A contract x(-) is incomplete if and only if
(9) P & (2|31 € X(#) such that P(£) > P(x)}.

In other words, a contract is incomplete if and only if the
partition of the state space it induces (or any coarsening of it) can
only be the result of an optimizing choice of contract in which the
parties are informationally constrained and these constraints are
binding. Less information about states of nature is included in an
incomplete contract than what would be optimal if there were no
constraints.

Definition 3 is cumbersome to use as it stands. It is, however,
equivalent to a much simpler formal statement. Let IT* C IT (with
typical element % *) be the class of partitions that are equal to or
finer than any partition of the state space induced by a first-best
sharing rule. In other words,

II* = {# € II|3x* € X* such that P(x*) > &}

Consider now the following alternative definition of incomplete
contracts.

DEFINITION 4. A contract x(-) is incomplete if and only if
10) P(x) & IT*.

In other words, a contract is incomplete if and only if it induces a
partition of the state space that is not as fine as or finer than the
partition induced by any first-best contract. It is not hard to show
that the two definitions we have given coincide.

LEMMA 3. Definitions 3 and 4 are equivalent.

Proof of Lemma 3. Assume that x(-) is complete according to
Definition 4. Therefore, P(x) € I1*. Since X* = X(% ), the definition
of IT* directly implies that x(-) is complete according to Definition 3.
Assume now that x(-) is complete according to Definition 3. Then
(again using the fact that X* = X(#)), there exists an x* € X*
such that P(x*) > P(x), which implies that P(x) € II* or equiva-
lently x(-) is complete according to Definition 4.

QED
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It is important to notice that the incompleteness of a contract
as in Definitions 3 or 4 is related to but is distinct from the
optimality of the contract. This is not surprising since we have
defined incompleteness as a feature of the partition of the state
space that a contract induces while optimality is clearly a feature of
the entire sharing rule, including the values it takes.

LEMMA 4. If a contract x(-) is incomplete, then it is suboptimal in
the sense that £ [x(-)] < Z [x*(")], while the reverse implica-
tion is not true.

Proof of Lemma 4. The fact that an incomplete contract must
be suboptimal is an immediate consequence of Definition 4. Hence,
we omit the details. To prove that the reverse implication is not
true, an example will suffice. Consider, for instance, a problem
yielding a simple coinsurance first-best rule as in (5). Observe next
that any sharing rule x(-) which is, say, strictly increasing over . is
complete since the partition it induces consists of all singleton sets.
Since such a sharing rule is clearly suboptimal for a simple
coinsurance problem, this is enough to prove the claim.

QED

We conclude by noting that Definition 4 fits the notion of
incompleteness for the example of a simple coinsurance problem
which we mentioned at the beginning of this section. Indeed, it is
immediate to check that, given the first-best sharing rule described
‘in (5), the contract described in (6) is incomplete according to
Definition 4. Similarly, a contract contingent on only one of two
variables on which the first-best contract depends is incomplete
according to the definition we have proposed.

II1.2. Silent Contracts

As we mentioned in the Introduction, the definition of incom-
pleteness we are proposing differs from that of silent contracts
most often used in the literature. In our view, however, the two are
not in contrast but on the contrary intimately related.

Consider again a silent contract together with the ex post
mechanism that is used in the uncontracted contingencies. We
shall assume, as in the literature, that the parties are aware of the
ex post mechanism and hence that the two together can in a sense
be viewed as a particular contract which does make prescriptions
for all states of nature. The ex post mechanism may constrain the
resulting contract in two distinct ways. First, it may constrain the
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values of the sharing rule on the uncontracted contingencies, for
instance, because of preassigned property rights. Second, it may
not be possible to fine tune the outcome of the ex post mechanism
so as to make its prescription vary sufficiently with the realized
state of nature. Take, for instance, the extreme case in which the ex
post mechanism must give the same outcome for all uncontracted
contingencies, but the actual outcome can be chosen in an ex ante
optimal manner. The analogy with problem (8) is apparent. The
parties can vary the sharing rule as they please on the set of
contracted contingencies, but not at all on the uncontracted ones.
The solution to problem (8) with the appropriate informational
constraint is equivalent to the optimal silent contract plus the ex
post mechanism. In essence, if we view the crucial problem posed
by silent contracts to be the fact that the ex post mechanism cannot
be made to vary at will with the realized state (rather than the fact
that the set of possible outcomes may be restricted by the ex post
mechanism), then the two definitions are very close indeed.
Whenever the inflexibility of the ex post mechanism is a binding
constraint for a silent contract, then that contract plus the ex post
mechanism is equivalent to a contract which does make a prescrip-
tion for every state of nature and which is incomplete according to
the definition we have proposed.

If we apply the definition of incompleteness proposed here to
the equilibrium contracts plus the ex post mechanism, obtained in
Grossman and Hart (1986) and Hart and Moore [1988, 19901, we
find that they are indeed incomplete. Conversely, the equilibrium
contracts plus the ex post mechanism derived when renegotiation
design is feasible [Chung 1991; Aghion, Dewatripont, and Rey
1994] or when the court’s information structure is rich enough
[N6ldeke and Schmidt 1994] are instead complete: the partition
they induce on the domain of the contract coincides with the first-
best one.

~

IV. THE APPROXIMATION RESULT

The algorithmic nature of contracts—modeled as Turing
machines—is not enough by itself to derive equilibrium incomplete
contracts. Given the natural continuity properties and bounded-
ness of the parties’ expected utility in their share of the surplus,
while in some cases the parties will be unable to write the first-best
contract, they will always succeed in approximating it, in terms of
their expected utilities, by means of a written contract. Thus, it is
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hard to argue that, without any additional constraint, the algorith-
mic nature of contracts explains the pervasive incompleteness
which we observe.

We formalize this approximation result in the following propo-
sition.

PROPOSITION 1. Given any £ > 0, there exists a feasible computable
contract {x}(-) € N such that

11 Zx*() - Zlx})] < &

The formal proof of Proposition 1 is in the Appendix. An intuitive
outline of the argument is quite simple, however.

By standard results it is always possible to decompose the
probability measure p on the state space .# into the weighted sum
of a purely atomic measure a and a nonatomic measure y. Hence,
the problem can be divided into two parts.

As far as the purely atomic measure is concerned, we can
proceed as follows. If the purely atomic measure a has an infinite
number of atoms, we can always choose a finite but sufficiently
large n such that the first n atoms of o have a total probability
arbitrarily close to one. If o has a finite number of atoms, we
consider all of them. In any case we can restrict attention to a finite
number of atoms. Around each element of such a finite set of
atoms, we can then construct a small half-open interval so that the
probability of the entire collection of half-open intervals has
arbitrarily small probability according to the nonatomic measure v.
We can then define a finite step function that takes regular rational
values arbitrarily close to the values of the first-best x*(-) on the
atoms of p, on the small intervals we have constructed around each
atom, and is zero otherwise.

We then turn to the nonatomic component <y of the original
measure p. Since the first best x*(-) is a Lebesgue-measurable
function (otherwise expected utility would not be defined), we
know that the first-best expected utility when the probability
measure is y can be approximated arbitrarily closely using a finite
step function instead of x*(-) itself. This implies that the same
approximation can also be carried out with a finite step function
which partitions .# into a finite collection of half-open intervals
with regular rational endpoints and taking regular rational values.

Finally, we combine the two finite step functions we have
constructed for the purely atomic and the nonatomic components
of u into a single finite step function as follows. The single step
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function is set equal to the one we obtained for the purely atomic
measure a for all states in the small intervals around the atoms,
and equal to the step function we have obtained for the nonatomic
measure vy for the rest of the state space. Since the utility functions
of both parties are continuous in x and bounded, with this
construction we can clearly approximate the first-best utility level
for both parties by a sharing rule that is a finite step function with
regular rational endpoints and taking regular rational values. By
Lemma 2 this implies that this approximation can be carried out
using a computable sharing rule {x}(-). Since we have assumed that
& is sufficiently rich as to contain all step functions near the first
best (Assumption 2), {x}(-) must be feasible. Since £ () is continu-
ous near the first best (Assumption 3), this clearly implies the
claim.

The approximation result shows that the level of expected
utility which the parties achieve in the first best can always be
approximated by a computable sharing rule. Suppose now that the
first-best sharing rule is not itself computable. Then the problem of
finding an optimal computable contract will not have a solution. In
fact, the first-best expected utility of the parties can be approxi-
mated arbitrarily closely, but not achieved by a computable con-
tract. The following remark identifies which conditions guarantee
that an optimal computable contract may be found.

REMARK. Suppose that Assumptions 1, 2, and 3 hold. Consider
problem (1) with the additional constraint that x is a comput-
able contract:

(12) max Z[{x}()] subjectto {x}() € # and x EN.

Then problem (12) has a solution if and only if the set X* of
solutions of problem (1) contains at least one computable
sharing rule.

V. ENDOGENOUSLY INCOMPLETE CONTRACTS

This section presents the main result of the paper. Before
getting into further formal details, it is necessary to review our
findings so far and to outline the direction we are about to take. In
Section II and in particular in subsection I1.4, we have introduced
and characterized the behavior of contracts that are restricted to be
algorithmic or computable in the Turing sense. We argued that
such restriction on the sharing rule identifying a contract is an
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appropriate way to model the formal nature of written contracts. It
turns out that it is not difficult to show that some contracts cannot
be written formally. This is, roughly speaking, just because of the
basic mathematical fact that not all functions are computable.

In Section IV, on the other hand, we found that without
further structure on the problem of finding an optimal contract the
computability restriction has little impact on the outcome of the
maximization process leading to the choice of a contract. In
particular, when the first-best sharing rule is not itself computable,
the maximization problem leading to the choice of an optimal
contract will not have a solution. However, a sequence of comput-
able contracts can be found that approximates more and more
closely the first best. Thus, without further restrictions, the parties
will always approximate the choice of a complete contract.

In this section we introduce further restrictions on the
maximization process leading to the choice of an optimal contract
which in turn lead us to conclude that for some first-best sharing
rules the parties will in fact select an incomplete contract. In other
words, we will find genuinely endogenously incomplete contracts.
The main restriction we impose is that the choice process which
leads to the selection of a particular contract should itself be
computable in some appropriate sense. We have in mind two
different, and not necessarily alternative, motivations to this
restriction. According to the first motivation, the formality of the
legal system imposes on contracting parties an additional techno-
logical constraint. The bargaining procedure that leads the parties
to the selection of a computable contract is so structured, by legal
rules or common practice, as to require parties, or their lawyers, to
present formal arguments to support their choice between any two
computable contracts. These formal arguments yield a choice
criterion that is itself formal, hence algorithmic. An example of this
type of restrictions can be envisaged in the rules that discipline
contracting between Government agencies and private firms: any
proposal needs to be submitted and replied to in a formal manner.
A more direct—but probably less palatable to some readers—way
to motivate this restriction is to think of rational agents as Turing
machines [Binmore 1987; Anderlini 1989; Canning 1992]. Clearly,
this way of modeling agents leads to a contract selection process
that is computable.

Intuitively, what drives the result we derive in this section is
the following. The formality of the choice process leads us in a
natural way to conclude that whenever the parties try to approxi-
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mate a given noncomputable first best they will do so through a
sequence of computable contracts which is itself computable as a
sequence. We then find that for some contracting problems the
approximating sequences of Proposition 1 are not computable.
Therefore, we are able to conclude that in some cases, the parties
will select a contract that is suboptimal in a way that makes it
incomplete.

V.1. Preliminaries

We start by introducing the formal definition of the choice
criterion through which contracting parties are assumed to iden-
tify their preferred computable contract.

DEFINITION 5. A choice criterion C € N is a Turing machine such
that

N |x onlyif (x) > £ (');
(13) (Cleex) =1, only if £ (x) < Z ().

It is important to notice that Definition 5 does not stipulate that a
choice criterion should give an answer for any pair of contracts. It
only requires a choice criterion to conform to the ranking implicit
in Z (-) whenever an answer is given. In other words, for some pairs
(x,x') the computation {C](x,x’) could generate a ‘‘meaningless”
output, equal to neither x nor x’, or it could simply loop and not
halt.

We view a choice criterion C € N as embodying the process of
contract selection in the following sense. Starting with a particular
contract x the choice criterion is used to “look’ for a better one if
this can be found. Once a better contract is found, the criterion is
used again to see whether a new improving contract can be found
and so on, possibly ad infinitum, thus generating a sequence of
contracts which is weakly monotonic in terms of £ (-). In the first
place, we would like the choice process generated by any choice
criterion {C}(,) to be independent of the initial computable
contract supplied as input to {C}(-,-). Hence, we restrict attention to
criteria {C}(-,") that are pseudo-complete in the following sense. For
any choice criterion C € N define

(14) Z¢ = {x € N|3x’ € N such that {C}(xx') = x, or x'}

as the set of computable contracts for which {C}(-,) gives a
meaningful answer.
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DEFINITION 6. A choice criterion C € N is pseudo-complete if and
only if % is not empty and for every pair (x,x') € #2:

C N % ifand only if ¥ (x) > Z(x');
(Clex) =1 ifandonlyif &) < £ &).

We are now in a position to associate to any choice criterion
{C}(-,-) which is pseudo-complete a sequence of computable con-
tracts. For any given computable contract x,_; € %, select the
next element of the sequence, x,, as the computable contract with
the lowest Godel number that guarantees {C}(x,x,_,) = x,.13
Formally, we associate to any criterion C a ‘“‘choice sequence’ as
follows:

REMARK. To each choice criterion C € N is associated a (unique)
choice sequence of computable contracts {{x, c}(")};_, as fol-

lows:
Xo = min {x|x € #}
and
min {x |x € Zc,{C)(xx,-1) = xx # x;, if suchx exists
15) x,= Vi<n-1)

Xp_1 otherwise.

Two things should be noted about the choice sequence associated
with any pseudo-complete C. The first is that even if the set % is
finite, we still associate an infinite sequence {{x, c}(")};_, with each
choice criterion pseudo-complete C, simply by repeating ad infini-
tum the “last” element of %Z. This is purely for simplicity in what
follows. The second is that the sequence (except for a finite initial
set of elements) does not depend on the particular initial value x,
because of the pseudo-completeness of C.

If the class of computable contracts % is finite, there exists, of
course, no difficulty in defining the computable contract to which
the choice sequence {{x, c}(")};-, converges. On the other hand, if
R is infinite, the problem becomes more complex. In fact, by
construction, we know that the sequence, being monotonic and
bounded, converges in Z (-) terms. Unfortunately, this does not
imply convergence of the choice sequence in any way that is
meaningful as far as the completeness or incompleteness of the

13. Note that the choice to minimize the Gédel number of the computable
contract is completely arbitrary, any other mechanism will do. In fact, Godel
numbers themselves may be reassigned using any computable bijection f: N — N.
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limit contract is concerned. We focus on the properties of the limit
contract of a potentially infinite sequence since, as Proposition 1
shows, this corresponds to the least likely situations in which
incompleteness may arise. Hence, we restrict attention to a set of
criteria C € N which allows us meaningful statements about the
limit completeness or incompleteness of their associated choice
sequence. Since incompleteness is a property of the induced
partitions, we would like the choice criterion to select a sequence of
computable contracts such that the sequence of induced partitions
of the state space converges itself in an appropriate sense. There-
fore, we need to define a metric on the set of partitions of the state
space ..

DEFINITION 7. On the set II of all partitions of .#, we define the
following distance between two partitions % € [land #' € II:

(16) dR,P'") = sup h(F(2,s); 7 (R',s)),

where A (-;-) denotes the Hausdorff metric over sets.!4

Since h(:;) is, by definition, a metric, we conclude that d(:,-) is a
metric as well.

We can now impose a second property on the choice criteria C
to be considered.

DEFINITION 8. A choice criterion C € N is convergent in partitions
if and only if the associated sequence of computable contracts
{{xn.c}()}5-o is such that the corresponding sequence of induced
partitions {P(x, c)};-, converges in the metric on partitions of
Definition 7.

We denote with % the partition to which the sequence of induced
partitions converges.!5 Any criterion C which is pseudo-complete
and convergent in partitions will allow us to meaningfully ask the
question of whether the associated choice sequence converges to a
partition of the state space which is associated with a contract that
is complete or incomplete. As is clear from the proof of Lemma 4,
however, it would be very simple to construct choice criteria C
which produce a choice sequence that converges to a contract that

14. Let A and B be two subsets of the real line. The Hausdorff distance between
A and B is defined as h(A;B) = max (inf;e4 sup,ep e(x;y ); inf,ep sup,eq e(x;y)}, where
e(x;y) is the Euclidean distance between x and y (see, for instance, Kelley [1969]).

15. Notice that the convergence in partition (Definition 8) is neither implied
nor implies pointwise convergence of the computable sharing rules of the con-
structed sequence.
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is complete, whatever the shape of the first best. An easy example is
a choice sequence that converges pointwise to an everywhere
strictly increasing sharing rule. Such criteria, however, are typi-
cally “wrong” on the grounds that they do not do a very good job at
optimizing according to & (-). Intuitively, such criteria, in the limit,
use all the information about the realized state, but simply in the
wrong way, relative to the first-best sharing rule. Intuitively, the
next restriction we impose on the set of criteria we consider is the
following. In the limit, the choice sequence should partition the
state space more and more finely, only if this is advantageous in
terms of the objective function £ (-). We call this property efficient
use of information. One interpretation (which we do not formalize
fully for reasons of space) of the following restriction is that of a
lexicographic cost (to be minimized after £ (-) has been maximized)
of partitioning more and more the state space. Formally, we state
this property as

DEFINITION 9. A choice criterion C € N makes efficient use of
information if and only if, given x € %, whenever there exists
anx’ € & computable such that P(x') > P(x) and ¥ (x') > £ (x),
thenx' € %Z¢.

In words, the previous definition says that a choice criterion makes
efficient use of information if it is eventually bound to select a
computable contract x’' that induces a strictly coarser partition of
the state space than a given contract x and dominates it, in £ (-)
terms.

We call sensible the choice criteria C € N which are pseudo-
complete, are convergent in partitions, and make efficient use of
information. In what follows, we will denote with the symbol & C
N the class of sensible criteria.

Since we have not made any assumption on the objective
function £ (-), nor about the concavity of the utility functions U;,
Definition 9 is almost empty as it stands. Suppose, for instance,
that G(-;") were, say, monotonic in the sum of its arguments, and
that both parties were risk-lovers. Then, the assumption of effi-
cient use of information would have very little impact on the
characteristics of the possible choice sequence associated with a
sensible criterion C € N. This is simply because, by making the
value of the sharing rule ‘‘vary more and more” with the state,
successive increments in Z () could be obtained. The last assump-
tion we shall make is that problem (1) satisfies a form of “risk-
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aversion.” Since we are dealing with a state-dependent-utility
formulation, this takes a slightly unfamiliar form.

Consider a sharing rule x(-) which induces, at least on some
subset of the state space .#, a partition strictly finer than the one
induced by some first-best sharing rule x*(-). In other words,
assume that x(') is such that we can choose s; and s; in such a way
that .#(P(x),s;) N #(P(x),sy) = & and 7 (P(x*),s;) = F(P(x*),s5).
From x(-) we can construct a sharing rule x'(-) “averaging” the
values of x(*) in the following sense. Define x'(-) as follows:

i P
an  we =@ s &P U PR,

c if s € 7(P(x),s;) U F(P(x),s5).
AsSUMPTION 4. There exists a regular rational number ¢ € & such
that £ (x') > £ (x) andx'(-) € 7.

V.2. Endogenously Incomplete Contracts: Preamble

The spirit of the computability restrictions we have imposed
on the sharing rule and on the choice criteria is that we are
prepared to accept the assumption that they both should be
algorithmic in the widest possible sense. This does not entail that
we are, for instance, allowing specific bounds on the ‘‘complexity’
(however defined) of either object. Both the contract and the
arguments used for selecting it must be capable of being ‘‘formal-
ized’’ in the widest possible sense of the word. Intuitively, we are
examining the “limit case” in two specific senses. The contract
technology simply restricts the parties to what can be written
down, but not to any specific contract length (as measured by, say,
the number of clauses or some other complexity measure). The
criterion through which the contract selection is made, again, must
be capable of being formalized, but no specific bounds on how
“smart” such procedure can be are imposed. It is therefore clear
that for some forms of problem (1) (or alternatively, for some
5-tuples U;(-;-)Us(-;)u(-)G(:;) and F) it will be possible to find a
criterion C such that the associated choice sequence converges to a
complete contract. The simplest case is that of a computable first
best. A less obvious situation is that of a contract problem which is
such that the ‘“‘approximating sequences’ of Proposition 1 are
computable in the sense that they are the choice sequences
associated with some criterion C. Therefore, our results in the
following two subsections all take the following general form. For
some contract problems it is the case that for any sensible choice



1112 QUARTERLY JOURNAL OF ECONOMICS

criterion C € % the associated choice sequence converges to a
partition which is associated with an incomplete contract.

We take this to mean that the restriction that both the sharing
rule and the choice criterion be algorithmic in nature will, in
appropriate cases, yield an endogenous choice of an incomplete
contract. We partially characterize a specific class of problems
yielding endogenously incomplete contracts in subsection V.4
below.

V.3. Endogenously Incomplete Contracts: Results

To demonstrate that genuinely endogenously incomplete con-
tracts may occur, it is enough to show that such incomplete
contracts arise in any class of contract problems. Hence, to keep
things simple and without any loss of generality, we restrict
attention to the class of simple coinsurance problems, character-
ized by a probability measure w(-) which has an atom at the state of
nature s and is (say) uniform in the remaining support and yields a
first-best sharing rule of the type defined in (5). We parameterize
this class with the single “accident’ state s.

ProposITION 2. There exist contract problems—i.e., there exist
simple coinsurance problems s—such that for every sensible
criterionC € &':

(i) the limit partition % is incomplete;
(ii) there exists an index n such that x, ¢ is incomplete for
everyn > n.

Proof of Proposition 2. Recall from Lemma 1 that any comput-
able contract x € N partitions the state space . into a collection of
half-open intervals. Hence, since P(x,c) consists of half-open
intervals for every n € N statement, (ii) follows since the first best
must take the same form as (5). We still need to prove statement (i).
We first prove that if for any given sensible C € %, #¢ is complete,
then it must be the case that . partitions . into the two sets
{5;[0,5) U (5,1]}. Denote by I(s;x, ) the half-open interval induced
by x, c arounds, § € I(s;x, ¢), and by a(s:x, o), b(5;x,c), respectively,
the lower and upper bounds of I(5;x,c). Notice that since the
sequence of induced partitions {P(x, ¢o)};_, converges to %¢ in the
metric of Definition 7, #; can only be complete if

lim a(5;x, ¢) = lim b(5;x,¢) = 5.
n—o n—o
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Suppose now that the sequence {P(x,c)},_, is such that for
arbitrarily large n we have that P(x, ¢) partitions at least one of the
two intervals [0;a(5,x,, 0)] and [b(5; %, ¢),1] into two or more subsets.
By Assumption 4, this implies that it is possible to find a comput-
able contract £ which coarsens P(x, ) into just {[a(;:x, 0),b(5:%, 0));
[0,a(5;x, 0) U [b(;x,,0),1]} and satisfies & (£) > £ (x,¢). Hence, by
efficient use of information we have £ € % and, since choice
sequences are always weakly monotonic in £ (), there exists an
arbitrarily large index m such that £ = x,,¢c. Notice now that
Definition 7 of the metric on partitions implies that

(18) d[P#),P(x, )] > (HaGx,c) + (1 — bE:x, o]}

Hence, for arbitrarily large n and m, d[P(x,, c),P(x,c)] is bounded
away from zero, which contradicts the hypothesis that the se-
quence of induced partitions {P(x,¢c)};_, converges to #¢. There-
fore, we have shown that if Z; is complete it necessarily takes the
form {s;[0,5) U (5,1]}.

Suppose now, by way of contradiction, that claim (i) is false.
Then we would have that for every s € . there existsa C € ¢ such
that % takes the form {5;[0,5) U (s,11}. The latter is a contradiction
since there are uncountably many possible s, while there are only
countably many possible C € #. Hence, the proof is complete.

QED

V.4. Coinsurance Contracts

In this final subsection we shall analyze more closely the
endogenous incomplete contracts in the class of simple coinsurance
problems. We characterize two features of incomplete computable
contracts selected by sensible criteria in this class of problems.
First, we give conditions on the ‘‘accident state’’ s which are
sufficient to guarantee that an endogenously incomplete contract
will arise. Second, we are able to characterize the form that such
incomplete contracts take. We find the intuition behind these
features both ‘‘realistic’’ and appealing.

We start with an intuitive discussion of the sufficient condi-
tions on 5. A recursively enumerable (r.e.) subset of N is a set of
numbers that can be exhaustively ‘‘listed”’ by a Turing machine.6
The existence of subsets of N that are not r.e. can easily be

16. Formally & C N isr.e. if and only if there exists a Turing machine M € N
such that EM L(n) € & for every n and for everye € & there exists a natural number
n € N such that (M }(n) = e. (See Cutland [1980, Ch. 7] for further details.)
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established by ‘“counting arguments” and is standard in the
literature on computability [Cutland 1980, Ch. 7].

Consider the binary expansion of a state of nature s € .¥ and
the associated sets of ‘‘characteristics’ that are present or not in s.
Formally, let

Fys) ={nE€N|s, =0}, F(s)={nEN]Js, =1},

where, as in (4), s, stands for the nth digit of the binary expansion
of s. The class of accident states which we will identify as yielding
incomplete coinsurance contracts are states s for which neither
Zo(8) nor %;(s) are r.e. sets. Intuitively, these are states for which
it is impossible to find an algorithm that lists either the character-
istics that are present or those that are not. We shall refer to such
real numbers as algorithmically undescribable or simply undescrib-
able. The following lemma claims that such numbers abound in the
interval [0,1]. This is proved by completely standard arguments
(see Cutland [1980, Ch. 7]); hence we state it without proof.

LEMMA 5. The set of undescribable real numbers has Lebesgue
measure 1 in the interval [0,1].

A longer and longer list of the digits in the binary expansion of
any number clearly yields successive approximations to such
number. Therefore, the following result—which we also state
without proof—does not come as a surprise.

LEMMA 6. If s € % is undescribable, there does not exist a Turing
machine M € N such that if e, = {M}(n) for every n, the
sequence {e,}:_, is monotonic and lim,_,. e, = s.

In words, undescribable numbers cannot be approximated, from
above or from below, in a computable way.

Proposition 3 below asserts that in a simple coinsurance
problem, if the accident state § is undescribable, an incomplete
contract will arise, and it will take the following form:

U if s € [0,a¢)
(19) x}s) = {h'  ifs € [ac,be)
I ifs € [bo1l,

where0 < ac < bc < 1,5 €E [ac,bo), and b’ < I'. Intuitively, if some
sensible criterion C € & gives rise to a complete limit partition,
one could use the sequence {x, c};_, to approximate computably the
accident state 5. If 5 is undescribable, we know that this is not
possible.
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We are now ready to state formally our last result, which is
proved in the Appendix.

ProPOSITION 3. Consider a simple coinsurance problem where the
accident state s is undescribable. Then for every sensible
choice criterion C € &,

(i) the limit partition % is incomplete;
(ii) the limit partition takes the form {[ac,bc);[0,ac) U [bc,1]}
with s € [ac,bc)-

The fact that according to Proposition 3 above genuinely incom-
plete contracts arise whenever the accident state is undescribable
raises the issue of whether an undescribable first best is an
unrealistic benchmark for our analysis. We do not think so. In fact,
the type of situation we have in mind is a situation in which the
parties have a clear idea of what they would like to describe in the
contract, but they cannot provide a finite description of the
characteristics that exactly define it. The following quote may be
seen as an example of this, arguably common, type of situation:

Year before (in Jacobellis v. Ohio, 1964), [Potter] Stewart had written that only
“hardcore’’ pornography could be banned, but conceded the subjective nature of any
definition: “I shall not today attempt to further define the kind of materials I
understand to be embraced within the shorthand definition; and perhaps I could
never succeed in doing so,” Stewart had said. “But I know it when I see it”
[Woodward and Armstrong 1979, p. 194].

The characterization presented in Proposition 3 lends itself
easily to an interpretation of the resulting incomplete contracts in
terms of standardized contracts. In fact, standard insurance
contracts, for example, define the accident state that entitles the
insured party to a compensation through a finite number of
conditions that need to be satisfied. We can think of these
conditions as roughly describing the accident state that is undescrib-
able. The resulting contract will look like the one characterized by
Proposition 3 which does not use a full description of the relevant
characteristics of the accident state, since a procedure that lists
them cannot be constructed.

VI. CONCLUDING REMARKS

This paper explores the extent to which contracts’ incomplete-
ness can be attributed to the algorithmic nature of contracts. We
show that the algorithmic nature of contracts by itself is not
enough to obtain genuinely incomplete contracts. On the other
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hand, if a similar restriction is imposed on the choice process on the
part of the contracting parties, endogenously incomplete optimal
contracts are found. Further, in the case of a simple coinsurance
agreement, the optimal incomplete contract parties write takes a
very simple and realistic form.

The incompleteness of contracts in our analysis is driven by
the fact that it may be impossible to describe accurately in a written
(and hence algorithmic) contract some relevant states of nature. As
in, for instance, Grossman and Hart [1986] and Hart and Moore
[1990], the difficulty is entirely ex ante. Once the state of nature is
realized, the description of it may be redundant, and hence all
difficulties may disappear. Modeling explicitly what aspects of a
contracting problem make it possible to contract tomorrow (after
the state is realized) on something which is impossible to contract
ex ante seems a very important direction for future research.

Our approach focuses on the limits that are imposed on
contracts by the available technology for describing future states of
nature and derives optimal incomplete contracts that describe in
an approximate way the critical states of nature. An alternative
cause for contract incompleteness can be envisaged [Grossman and
Hart 1986] in the available technology for describing the other
essential element of a contract: the parties’ expected performance
and the mapping from performance to remuneration. We explore
the consequences of imposing computability constraints on the
possible contracts in this type of contracting problem in Anderlini
and Felli [1993b]. We find that incompleteness may be more
pervasive than in the present context because natural discontinui-
ties destroy the force of the approximation result of Section IV
above.

APPENDIX

Definitions of a Computable Contract

The second of the two equivalent definitions of computable
contracts we presented in subsection I1.3 above, Definition 2, is
that of a two-tape Turing machine.l”

17. See Hopcroft and Ullman [1979, Ch. 7] for definitions of Turing machines
with any number of tapes and various equivalence theorems. It should also be noted
that the use we make of the precise specification of a two-tape Turing machine is
completely inessential. Everything that follows could be done in the context of an
appropriately ‘“‘programmed’” standard Turing machine. We choose the specifica-
tion below because we believe it helps intuitive reasoning about the way computable
contracts work.
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One of the two tapes is aread-only (r.0.) tape, while the other is
a read/write (r.w.) tape. Given a state s € . the binary expansion
of this real number is placed on the machine’s r.o. tape. As
mentioned in subsection I1.3 above, we follow the convention to
choose the binary expansion containing the largest number of zero
digits. The machine then starts operating according to its program,
using as input what is read from the r.o. tape and using the r.w.
tape for whatever intermediate operations are necessary. When the
machine eventually ‘“‘halts’’ (which we assume it does given any
s €.%), whatever is left on the r.w. tape is taken to be the
machine’s output on input s. Since we assume that the machine
halts in a finite number of steps, the actual computation will only
ever involve ‘“‘scanning”’’ a finite number of digits on the r.o. tape.

The alternative Definition 1 of a computable contract defines it
as a pair of computable functions, (f,g), where the function
1+ — N is the information-gathering procedure and the function
g:N — N is the outcome procedure.

Denote by D(Z ;s) the set of digits of the binary representation
of s in the set of positions &, where & is a finite subset of the
naturals N and s is the state of nature in its binary representation.
For example, if s = 010110 . ..and 2 = {1;3;4;6}, then D(Z ;s) =
{(1,0);(8,0);(4,1);(6,0)}. Note that for every set 2 C N finite and
every s € % the set of pairs D(Z ;s) can be given a Godel number.
Also all finite subsets of N can be given a Gédel number. Hence
D(-;) can be thought of as a mapping: D:N X .¥ — N.

The information-gathering procedure is, then, defined as
follows. At the initial stage the set of digits scanned by the
information gathering procedure is empty: D(J;s) = J, for every s.
The first step of the procedure consists of scanning some digit of
the binary expansion of s, given that no digits have been scanned
before:

2, =),

where 2 is the set of scanned digits in the first step and /:N — N is
the scanning procedure that reads step by step the digits of the
binary expansion of a real number. Hence, after the first step the
set of pairs D(Z,;s) is the information available about s. Define
recursively

(A.1) D, = fID(D,_1;9)]
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so that D(Z,;s) is the information available after n steps (including
the one defined on the empty set). Assume that f(-) satisfies the
following properties: ;
(D1) The scanning procedure f[D(2,;s)] is defined for every
state of nature s and every index n € N.
(D2) For every s € . there exists ann € N such that 2,,,.; =
2, (and hence 9,,,; = 2,,Vi €N).
(D3) The scanning procedure f:N — N is computable.

Properties (D1) and (D2) require the procedure f to be well defined
for every feasible state of nature s and to stop after a finite number
of rounds. Property (D3) simply stipulates that the procedure
should be computable in the Turing sense.

Finally, define n(s) as the least n such that 9,,, = 9,, for a
given state of nature s. We have now all the elements to define the
information-gathering procedure f(-). For any state of nature s let

(A.2) £(s) = D(Prie;5)-

In words, f(s) is the total information gathered if the state of
nature is s.

The outcome procedure is simple to describe. Such procedure,
&:N — N, maps the output of the information-gathering procedure,
f(s) = D(D5);$), into a regular rational number ¢ € & which is the
value of the computable sharing rule (contract) for the given state
of nature s. We require such outcome function g(-) to be defined for
everys € ..

The composition of the procedures f(-) and g(-) delivers the
value of a computable contract for every realized state of nature s:

¢ = g{f[D(@ry; 91}

As we mentioned above, the two alternative definitions of a
computable contract Definition 1 and 2 coincide. This result is
stated and proved in the following lemma.

LEMMA A.1. Definitions 1 and 2 are equivalent, in the sense that

® for every pair of functions (f,g) satisfying Definition 1 there
exists a Turing machine x € N satisfying Definition 2 and
such that

A.3) (£)®) = glfID@re;8)l} Vs €.7;

o for every two-tape (r.w. and r.o.) Turing machine x € N
satisfying Definition 2 there exists a pair of functions, (f,g),
satisfying Definition 1 and equation (A.3).
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Proof of Lemma A.1. All the arguments involved are standard
in the computability literature, hence we only sketch the argu-
ment. We proceed by construction. Given any pair of functions (f,g)
satisfying Definition 1, construct a Turing machine x € N which,
for any state of nature s, first computes f(s), step by step, scanning
the r.o. tape and transcribing the final outcome on the r.w. tape.
Once this is done, {x}(s) computes g(f(s)) using the r.w. tape only,
since g is, by definition, computable. The resulting {x}(-) satisfies,
by construction, Definition 2 and equation (A.3).

Given any Turing maching {x}(*) satisfying Definition 2, con-
struct a pair (f,g) as follows. For any state of nature s, let the
function f simulate the whole computation of {x}(s) and output as
f(s) the set of squares of the r.o. tape scanned by {x}(s) during the
computation. Note that the output of {x}(s) must be a computable
function of the set of squares of the r.o. tape scanned by {x}(s)
during the computation. Hence, g can just be set equal to such a
computable function. The resulting pair (f,g) satisfies, by construc-
tion, Definition 1 and equation (A.3).

QED

A computable contract as defined above can always be associ-

ated with a natural number x € N. This can equivalently be taken

to be either the Godel number of the Turing machine of Definition

2 or the Godel number of the pair of computable functions in
Definition 1.

Proof of Lemma 1

Property (i) follows from the definition of ®({x};s), ({x},s) and
equation (A.3) from which s’ € ®({x};s) implies that f(s") = f(s).
Property (ii) follows from the assumption that f(s) is well defined
for every state of nature s € .. Finally, we prove property (iii) by
contradiction. Assume that the statement (iii) is false. Hence, we
should be able to find s’ and s” such that ®({x};s") N ®({x};s") = &
and ®({x};s’) # ®({x};s"). Note that d({x};s’) = P({x};s") implies
that s’ = s”. Moreover, the definition of ®(-;-) and ®({x};s’) N
®({x);s") # @ imply that the first # = min {n({x},s"),n({x},s")} digits
of $([x},s") and d({x},s”) have to coincide. Hence, since by definition
of ®(;) and ®(jx};s’) = ®({x};s”), it must be that n({x},s") =
n({x},s"), without any loss in generality we assume that n({x},s") <
n({x},s"). Define D(n,{x},s) as the nth set of digits scanned by {x}(s)
on state s. (In terms of previously introduced notation D(n,{x},s) =
9, as defined in equation (A.1), the only difference being in the
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dependence from {x}(-) and s made explicit.) Recalling the definition
of n(s)—as the least n such that D(n + 1,{x},s) = D(n,{x},s)—the
coincidence of the first n({x},s’) digits of the binary expansion of
o({x},s’) and &({x},s”) implies that

D(n(s),{x},s") = D(n(s"),{x},s")
and correspondingly,
D(n(s') + i,{x},s") = D(n(s’') + i,{x},s")

for alli € N. In other words, since the two states s’ and s” have the
first n({x},s’) digits of their binary expansion in common, the
scanning of s” has to stop after n(s’) digits as well. This is a
contradiction of n({x},s') < n({x},s").

QED

Proof of Proposition 1
Some more notation is needed first. Let

(A4) U= LU,»[x*(s);s] du(s) =12

be the expected utility yielded to party i by the first-best sharing
rule. Using standard results,’® we can always decompose any
probability measure . on.” = [0,1] into the weighted sum of two
probability measures: a purely atomic measure o, and a nonatomic
measure y. We then denote U¥ = pU¥ + (1 —p)U¥, i = 1,2,
where p is a real number between zero and one, and

a5 Ur= [ Ulc*e)sldyis) U= S Ule*s,)s,]os)
n=1

with s,, (n € N) denoting the atoms of a. Further, the symbol
L; will denote party i’s maximum utility loss from a
sharing rule taking the ‘“wrong” values. In other words L; =
supse »,xerUi(x;8) — infieq,cr Ui(x;s), which is bounded since we
assumed Uj;(-;-) to be bounded from above and from below.

Fix now an arbitrary e > 0. Choose n sufficiently large so that

(A6) LY as) <3 i=12

18. See, for instance, Parthasarathy [1977], Remark 26.8.
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Construct now a finite collection of half-open intervals around the

first n atoms of «, [g,,8,), n=1,...,7 with the following
properties. First, s, € [g,;5,), foreveryn = 1, ..., 7n. Second, let
(A U 8n8n),

and ensure that

(A8) Ly(A) < % i=12.
Notice that the intervals [g,,g,), » = 1,...,7 can always be

chosen so that (A.8) holds since vy is nonatomic. Third, ensure that
& and g, are regular rational numbers. This is clearly always
possible since such numbers are dense in .%,

Since U(*;') is continuous in its first argument, we can now
choose a set of regular rational numbers v;; . . . ; v; such that

(A9) |Ui(x*(s,);s,) — Ui(,;s,)| < g Vn=1,...,n i=12.
Notice now that by Assumption 1 the integrals in (A.4) and hence
the integrals in (A.5) are well defined. From the definition of a
Lebesgue integral, the continuity of U,(-;) in its first argument,
and the fact that -y is nonatomic, we can then deduce the following.
There exist two finite sets of regular rational numbers, g,, €.%,
m=0,...,m(withqgy =0g7 = 1),and z,, . . ., 25, such that if one
defines the step function,

g(s) =2Zn, ©® S E [qm—lfqm)y m=1,...,m,
then
(A.10) Ur - [ Udgleksdyo)| < 5
. i 22 1 g ’ y 2 M

We now proceed to combine the intervals around the atoms
constructed earlier with the step function g(-) to obtain the desired
approximate computable contract. Consider the step function
defined by

vn ifS e [gn,gn)
fs) = . - =
2,  ifs € lgm-1,9m) N A,
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where A is the complement of A as defined in (A.7). Clearly, f(-)isa

‘step function taking a finite set of regular rational values that
partitions.” into a finite set of half-open intervals which have as
endpoints regular rational numbers. Therefore, by Lemma 2 there
exists a computable contract x € N such that {x}(s) = f(s) for every
s €.%. It remains to show that the approximation property of the
statement of the proposition holds for a sharing rule equal to f(-).
Using (A.6), (A.8), (A.9), and (A.10), simple algebra shows that by
construction we have

€ € € .
Ut - [z UF6s9dv6)| <5+ Ly@) < s+y=e i=12

and

& €S € €
<Lis§§a(s)+§s§1a(s) <gtgz=e

i=12

Ut~ [ Ufsy9)dats)

and therefore, forany 0 < p < 1,

(A.11)

pU¥ + (1 — p)U*= — LUKpUi(f(s);s)dy(s)

- 1 = p)U;(f(s);s)dals)

.7 UA

Sincep =py+ (1 —plaand U¥=pU**+ (1 — p)U*~, from (A.11)
it follows that

<e 1=12.

(A.12) <e

Ut- [ ULf);sldus)

To conclude the argument, notice that by Assumption 2, for e
sufficiently small, (A.12) obviously implies (11). By Assumption 3,
for ¢ sufficiently small, the sharing rule f(s) is feasible and hence
the proof'is complete.

QED

Proof of Proposition 3

If (i) holds, it is clear from the proof of Proposition 2 that (ii)
follows. Hence, we only prove (i). Given a sensible criterion C € %,
it is clear from the way we have defined the choice sequence
associated with it that there exists a Turing machine M € N such
that {(Mc}(n) = x, ¢ for every n € N. From the proof of Proposition 2
we know that for any sensible criterion C € Z there exists 7 such
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that n > n guarantees that
P(x,c) = {[a(5;x,,0),06;x, 0));[0,a6;5x, o) U [b6,x, 0),11}
and moreover that if # is complete,

im a(s;%,,0) = 11_1:2 bs;x,0) = 5.
Let ay be a regular rational number in [0,a[s,x; ). Assume now
that (i) is false, and consider C € # such that.# is complete with s
undescribable. In the rest of the proof we construct a Turing
machine T which approximates computably s from below. This
yields a contradiction.
Consider the following “‘steps’ defining operations of Turing
machine T € N on input m € N.19
1) Compute {Mc}(n + 2) = x5, ¢, (start with z = 0).
2) Compute {x7,,c}(1).
3) Compute {xz..c}(a, + (1 —a,)/h), (start with w =0,
h=1).
4) Check whether {x;,,cl(a, + (1 — ay)/h) # {x 7., c}(D).
5) Ifthe answer to 4) is no, set h: = h + 1 and go to 3).
6) If the answer to 4) is yes, set k, = a, + (1 — a,)/h.
7) Compute {x5,,c}(@, + (&, — a,)/t) (start with ¢ = 1).
8) Check whether {x;,,c}(a, + (&, — a,)/t) = {x7:.c}(0).
9) If the answer to 8) is no, set¢: =¢ + 1 and go to 7).
10) If the answer to 8) is yes, set a,+1 = a,, + (k, — a,)/t.
11) Setw: =w + 1.
12) Check whether w = m. If yes, print a,, and stop; if no, set
zz=z+ 1.
13) Check whether {x;,, c}(@,) = { %7..,}(0).
14) If the answer to 13) is yes, go to 1).
15) If the answer to 13) is no, set z: =z + 1 and go to 13).
It is clear from steps 1) to 15) that m’' > m implies that
{T}m') > {T}(m), {T}(m) < s for every m € N and

lim {T}(m) = 5.

This concludes the proof.
QED

ST. JOHN’S COLLEGE, CAMBRIDGE
LONDON ScHOOL OF ECONOMICS

19. In the theory of computability it is widely accepted that if a ‘‘clear sequence
of steps” can be defined performing a certain computation, then a Turing machine
which performs the computation exists. Arguments of this type are known as proof
by Church’s Thesis. See, for instance, Cutland [1980, Ch. 1 and 3].
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